957 resultados para water-soluble P
Resumo:
This study deals with the seasonal distribution of Al, Ca, Cu, Fe, K, Mg, Na, Pb and Zn and water soluble ions (Cl-, PO4(3-), NO3-, SO4(2-), HCOO-, CH3COO-, oxalate, succinate, Na+, NH4+, K+, Mg2+ and Ca2+) found in PM10 samples (particulate matter less than 10 mm in diameter) São Paulo City, Brazil, (April 2003-May 2004). Higher atmospheric levels were found for SO4(2-), NO3-, Cl- and PO4(3-) while the main organic anions were oxalate and formate. Atmospheric levels for elements were: Fe > Al > Ca > K > Na > Mg > Zn > Cu > Pb. Some sources were predominant for some species: (i) fuel burning and/or biomass burning (NO3-, HCOO-, C2O4(2-), K+, Mg2+, Ca2+, Fe, Pb, Zn, Al, Ca, K and Mg), (ii) gas-to-particle conversion (SO4(2-) and NH4+) and (iii) sea salt spray (Cl-, Na+ and Na).
Resumo:
In this study, fluid bed granulation was applied to improve the dissolution of nimodipine and spironolactone, two very poorly water-soluble drugs. Granules were obtained with different amounts of sodium dodecyl sulfate and croscarmellose sodium and then compressed into tablets. The dissolution behavior of the tablets was studied by comparing their dissolution profiles and dissolution efficiency with those obtained from physical mixtures of the drug and excipients subjected to similar conditions. Statistical analysis of the results demonstrated that the fluid bed granulation process improves the dissolution efficiency of both nimodipine and spironolactone tablets. The addition of either the surfactant or the disintegrant employed in the study proved to have a lower impact on this improvement in dissolution than the fluid bed granulation process.
Resumo:
In this study a novel method MicroJet reactor technology was developed to enable the custom preparation of nanoparticles. rnDanazol/HPMCP HP50 and Gliclazide/Eudragit S100 nanoparticles were used as model systems for the investigation of effects of process parameters and microjet reactor setup on the nanoparticle properties during the microjet reactor construction. rnFollowing the feasibility study of the microjet reactor system, three different nanoparticle formulations were prepared using fenofibrate as model drug. Fenofibrate nanoparticles stabilized with poloxamer 407 (FN), fenofibrate nanoparticles in hydroxypropyl methyl cellulose phthalate (HPMCP) matrix (FHN) and fenofibrate nanoparticles in HPMCP and chitosan matrix (FHCN) were prepared under controlled precipitation using MicroJet reactor technology. Particle sizes of all the nanoparticle formulations were adjusted to 200-250 nm. rnThe changes in the experimental parameters altered the system thermodynamics resulting in the production of nanoparticles between 20-1000 nm (PDI<0.2) with high drug loading efficiencies (96.5% in 20:1 polymer:drug ratio).rnDrug releases from all nanoparticle formulations were fast and complete after 15 minutes both in FaSSIF and FeSSIF medium whereas in mucodhesiveness tests, only FHCN formulation was found to be mucoadhesive. Results of the Caco-2 studies revealed that % dose absorbed values were significantly higher (p<0.01) for FHCN in both cases where FaSSIF and FeSSIF were used as transport buffer.rn
Resumo:
Isolated water-soluble analytes extracted from fog water collected during a radiation fog event near Fresno, CA were analyzed using collision induced dissociation and ultrahigh-resolution mass spectrometry. Tandem mass analysis was performed on scan ranges between 100-400 u to characterize the structures of nitrogen and/or sulfur containing species. CHNO, CHOS, and CHNOS compounds were targeted specifically because of the high number of oxygen atoms contained in their molecular formulas. The presence of 22 neutral losses corresponding to fragment ions was evaluated for each of the 1308 precursors. Priority neutral losses represent specific polar functional groups (H2O, CO2, CH3OH, HNO3, SO3, etc., and several combinations of these). Additional neutral losses represent non-specific functional groups (CO, CH2O, C3H8, etc.) Five distinct monoterpene derived organonitrates, organosulfates, and nitroxy-organosulfates were observed in this study, including C10H16O7S, C10H17NO7S, C10H17 NO8S, C10H17NO9S, and C10H17NO10S. Nitrophenols and linear alkyl benzene sulfonates were present in high abundance. Liquid chromatography/mass spectrometery methodology was developed to isolate and quantify nitrophenols based on their fragmentation behavior.
Resumo:
Self – assembly is a powerful tool for the construction of highly organized nanostructures [1]. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. Herein, we demonstrate that designed molecule Py3 forms dimensionally - defined supramolecular assemblies under thermodynamic conditions in water [2]. To study Py3 self-assembly, we carried out whole set of spectroscopic and microscopic experiments. The factors influencing stability, morphology and behavior of «nanosheets» in multicomponent systems are discussed
Resumo:
A new class of water-soluble C60 transfecting agents has been prepared using Hirsch-Bingel chemistry and assessed for their ability to act as gene-delivery vectors in vitro. In an effort to elucidate the relationship between the hydrophobicity of the fullerene core, the hydrophilicity of the water-solubilizing groups, and the overall charge state of the C60 vectors in gene delivery and expression, several different C60 derivatives were synthesized to yield either positively charged, negatively charged, or neutral chemical functionalities under physiological conditions. These fullerene derivatives were then tested for their ability to transfect cells grown in culture with DNA carrying the green fluorescent protein (GFP) reporter gene. Statistically significant expression of GFP was observed for all forms of the C60 derivatives when used as DNA vectors and compared to the ability of naked DNA alone to transfect cells. However, efficient in vitro transfection was only achieved with the two positively charged C60 derivatives, namely, an octa-amino derivatized C60 and a dodeca-amino derivatized C60 vector. All C60 vectors showed an increase in toxicity in a dose-dependent manner. Increased levels of cellular toxicity were observed for positively charged C60 vectors relative to the negatively charged and neutral vectors. Structural analyses using dynamic light scattering and optical microscopy offered further insights into possible correlations between the various derivatized C60 compounds, the C60 vector/DNA complexes, their physical attributes (aggregation, charge) and their transfection efficiencies. Recently, similar Gd@C60-based compounds have demonstrated potential as advanced contrast agents for magnetic resonance imaging (MRI). Thus, the successful demonstration of intracellular DNA uptake, intracellular transport, and gene expression from DNA using C60 vectors suggests the possibility of developing analogous Gd@C60-based vectors to serve simultaneously as both therapeutic and diagnostic agents.
Resumo:
Matrix metalloproteinases (MMPs) and TNF-alpha converting enzyme (TACE) contribute to the pathophysiology of bacterial meningitis. To date, MMP-inhibitors studied in models of meningitis were compromised by their hydrophobic nature. We investigated the pharmacokinetics and the effect of TNF484, a water-soluble hydroxamate-based inhibitor of MMP and TACE, on disease parameters and brain damage in a neonatal rat model of pneumococcal meningitis. At 1 mg/kg q6h TNF484 reduced soluble TNF-alpha and the collagen degradation product hydroxyproline in the cerebrospinal fluid. Clinically, TNF484 attenuated the incidence of seizures and was neuroprotective in the cortex. Water-soluble MMP-inhibitors may hold promise in the therapy of bacterial meningitis.
Resumo:
The aim of this work is to investigate the various parameters that could control the encapsulation of lipophilic drugs and investigate the influence of the physical properties of poorly water-soluble drugs on bilayer loading. Initial work investigated on the solubilisation of ibuprofen, a model insoluble drug. Drug loading was assessed using HPLC and UV spectrophotometric analysis. Preliminary studies focused on the influence of bilayer composition on drug loading to obtain an optimum cholesterol concentration. This was followed up by studies investigating the effect of longer alkyl chain lipids, unsaturated alkyl chain lipids and charged lipids. The studies also focused on the effects of pH of the hydration medium and addition of the single chain surfactant a-tocopherol. The work was followed up by investigation of a range of insoluble drugs including flurbiprofen, indomethacin, sulindac, mefenamic acid, lignocaine and progesterone to investigate the influence of drugs properties and functional group on liposomal loading. The results show that no defined trend could be obtained linking the drug loading to the different drug properties including molecular weight, log P and other drug specific characteristics. However, the presence of the oppositely charged lipids improved the encapsulation of all the drugs investigated with a similar effect obtained with the substitution of the longer chain lipids. The addition of the single chain surfactant a-tocopherol resulted in enhancement of drug loading and possibly is governed by the log P of the drug candidate. Environmental scanning-electron microscopy (ESEM) was used to dynamically follow the changes in liposome morphology in real time during dehydration thereby providing a alternative assay of liposome formulation and stability. The ESEM analysis clearly demonstrated ibuprofen incorporation enhanced the stability of PC:Chol liposomes.
Resumo:
186 p.
Resumo:
A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=eta(5)-cyclopentadienyl, mTPPMS = diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy = 2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Sulfur speciation and the sources of water-soluble sulfate in three oxidizing sulfidic mine tailings impoundments were investigated by selective dissolution and stable isotopes. The studied tailings impoundments-Piuquenes, Cauquenes, and Salvador No. 1-formed from the exploitation of the Rio Blanco/La Andina, El Teniente, and El Salvador Chilean porphyry copper deposits, which are located in Alpine, Mediterranean, and hyperarid climates, respectively. The water-soluble sulfate may originate from dissolution of primary ore sulfates (e.g., gypsum, anhydrite, jarosite) or from oxidation of sulfide minerals exposed to aerobic conditions during mining activity. With increasing aridity and decreasing pyrite content of the tailings, the sulfur speciation in the unsaturated oxidation zones showed a trend from dominantly Fe(Ill) oxyhydroxide fixed sulfate (e.g., jarosite and schwertmannite) in Piuquenes toward increasing presence of water-soluble sulfate at Cauquenes and Salvador No. 1. In the saturated primary zones, sulfate is predominantly present in water-soluble form (mainly as anhydrite and/or gypsum). In the unsaturated zone at Piuquenes and Cauquenes,the delta(34)S(S04) values ranged from +0.5 parts per thousand to +2.0 parts per thousand and from -0.4 parts per thousand to +1.4 parts per thousand Vienna Canyon Diablo Troilite (V-CDT), respectively, indicating a major sulfate source from pyrite oxidation (delta(34)S(pyrite) -1.1 parts per thousand and -0.9 parts per thousand). In the saturated zone at Piuquenes and Cauquenes, the values ranged from -0.8%. to +0.3 parts per thousand and from +2.2 parts per thousand to +3.9 parts per thousand, respectively. At Cauquenes the 34 S enrichment in the saturated zone toward depth indicates the increasing contribution of isotopically heavy dissolved sulfate from primary anhydrite (similar to+10.9%o). At El Salvador No. 1, the delta(34)S(SO4) average value is -0.9 parts per thousand, suggesting dissolution of supergene sulfate minerals (jarosite, alunite, gypsum) with a delta(34)S similar to -0.7 parts per thousand as the most probable sulfate source. The gradual decrease Of delta(18)O(S04) values from the surface to the oxidation front in the tailings impoundments at Piuquenes (from -4.5 parts per thousand to -8.6 parts per thousand Vienna Standard Mean Ocean Water, V-SMOW) and at Cauquenes (from -1.3 parts per thousand to -3.5 parts per thousand) indicates the increasing importance of ferric iron as the main electron acceptor in the oxidation of pyrite. The different delta(18)O(SO4) values between the tailings impoundments studied here reflect the local climates.
Resumo:
In the process of phosphate rock acidulation, several impure P compounds may be formed along with the desirable Ca and NH4 phosphates. Such compounds normally reduce the content of water-soluble P and thus the agronomic effectiveness of commercial fertilizers. In order to study this problem, a greenhouse experiment consisting of three consecutive corn crops was conducted in samples of a Red-Yellow Latosol (Typical Hapludox) in a completely randomized design (6 x 2 x 2), with four replicates. Six commercial fertilizers were added to 2 kg of soil at a rate of 70 mg kg-1 P, based on the content of soluble P in neutral ammonium citrate plus water (NAC + H2O) of the fertilizers. Fertilizer application occurred either in the original form or leached to remove the water-soluble fraction, either by mixing the fertilizer with the whole soil in the pots or with only 1 % of its volume. The corn plants were harvested 40 days after emergence to determine the shoot dry matter and accumulated P. For the first crop and localized application, the elimination of water-soluble P from the original fertilizers resulted in less bioavailable P for the plants. For the second and third crops, the effects of P source, leaching and application methods were not as evident as for the first, suggesting that the tested P sources may have similar efficiencies when considering successive cropping. The conclusion was drawn that the water-insoluble but NAC-soluble fractions of commercial P fertilizers are not necessarily inert because they can provide P in the long run.
Resumo:
Lime and gypsum influence nutrient availability and uptake, as well as the content of organic acids in the aerial plant parts. These changes, quantified by plant analysis of soluble nutrients, may potentiate the effect of soil amendment, ensuring the sustainability of the no-tillage system. In this sense the effect of lime and gypsum surface application on the content of water-soluble nutrients in peanut and oat residues was evaluated. The experiment was conducted on an Oxisol in Botucatu (SP) in the growing seasons 2004/2005 and 2005/2006. It was arranged in a randomized block design in split plots with four replications, where lime rates represented the plots and presence or absence of gypsum application the subplots. Peanut was grown in summer and white oat in the winter in the entire experimental area. Gypsum applied to peanut increased soluble Ca only in the first season, due to the short period between product application and determination of soluble nutrient contents in the plant extract. Liming of peanut and oat increased soluble Ca, Mg, K contents, did not alter Cu content and reduced Zn, Mn and Fe contents in both years of cultivation. Gypsum on the other hand reduced the electrical conductivity of peanut (2004/2005 and 2005/2006) and white oat (2004/2005).
Resumo:
The water soluble material, 3-n-propyl-1-azonia-4-azabicyclo[2.2.2]octanechloride silsesquioxane (dabcosil silsesquioxane) was obtained. The dabcosil silsesquioxane was grafted onto a silica surface, previously modified with aluminum oxide. The resulting solid, dabcosil-Al/SiO2, presents 0.15 mmol of dabco groups per gram of material. The product of the grafting reaction was analyzed by infrared spectroscopy and N2 adsorption-desorption isotherms. The dabcosil-Al/SiO2 material was used as sorbent for chromium (VI) adsorption in aqueous solution.