987 resultados para water budget
Resumo:
FAMOUS is an ocean-atmosphere general circulation model of low resolution, based on version 4.5 of the UK MetOffice Unified Model. Here we update the model description to account for changes in the model as it is used in the CMIP5 EMIC model intercomparison project (EMICmip) and a number of other studies. Most of these changes correct errors found in the code. The EMICmip version of the model (XFXWB) has a better-conserved water budget and additional cooling in some high latitude areas, but otherwise has a similar climatology to previous versions of FAMOUS. A variant of XFXWB is also described, with changes to the dynamics at the top of the model which improve the model climatology (XFHCC).
Resumo:
Sea ice plays a crucial role in the earth's energy and water budget and substantially impacts local and remote atmospheric and oceanic circulations. Predictions of Arctic sea ice conditions a few months to a few years in advance could be of interest for stakeholders. This article presents a review of the potential sources of Arctic sea ice predictability on these timescales. Predictability mainly originates from persistence or advection of sea ice anomalies, interactions with the ocean and atmosphere and changes in radiative forcing. After estimating the inherent potential predictability limit with state-of-the-art models, current sea ice forecast systems are described, together with their performance. Finally, some challenges and issues in sea ice forecasting are presented, along with suggestions for future research priorities.
Resumo:
In the experimental area of the Department of Environmental Sciences (21.85° S; 48.43° W; 786 m), in the School of Agronomical Sciences, UNESP, Botucatu, SP, an experiment was carried out using peanut (Arachis hypogaea L), cv. IAC-TATU-ST, to quantify the crop daily water requirements. During the peanut crop cycle, the environmental variables, such as rainfall, air temperature, air relative humidity, soil matric potential, soil heat flux and radiation balance, have been registered continually. These measurements were used to calculate the daily crop evapotranspiration, by the Bowen ratio method. The water replacement required by the peanut crop was done the dripping irrigation system, oriented by a dynamic agrometeorological model that computes the entrance and exit of water in the soil. During the peanut crop cycle, 9.0 mm of water was used from sowing to emergence; 67.0 mm of water, in the growth stage; 166.0 mm, in the flowering stage; 124.0 mm in the final stage and 46.0 mm from physiological maturity to harvest. Oot of 412.0 mm of the total consumption, 246.0 mm of water was supplied by irrigation and 166.0 mm by the rain. The grain yield was 3.15 t ha-1 for 15% of humidity, and the water use efficiency was 0.764 kg m-3.
Resumo:
A dynamic systems water resources simulation model was developed as a tool to help to analyze water resources management alternatives for the Piracicaba, Capivari and Jundiaí River Water Basins (BH-PCJ). Different politics policy were simulated for 40-year. The model estimates water supply and demand, as well as contamination load from several consumers. Six runs were performed using average precipitation value, changing water supply and demand, and different volumes diverted from BH-PCJ to BH-Alto Tietê For the Business as Usual, the Sustainability Index went from 0.41 in 2010 to 0.22 by 2050; the Water Use Index changed from 80.7% in 2010, to 125.5% by 2050; and the Falkenmark Index changed from 1,302 m 3 person -1 year -1 in 2010 to 774 m 3 P -1 year -1 by 2050. It was noticed that sanitation is one of the biggest concerns in the near future at PCJ River Basin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aggregates were historically a low cost commodity but with communities and governmental agencies reducing the amount of mining the cost is increasing dramatically. An awareness needs to be brought to communities that aggregate production is necessary for ensuring the existing infrastructure in today’s world. This can be accomplished using proven technologies in other areas and applying them to show how viable reclamation is feasible. A proposed mine reclamation, Douglas Township quarry (DTQ), in Dakota Township, MN was evaluated using Visual Hydrologic Evaluation of Landfill Performance (HELP) model. The HELP is commonly employed for estimating the water budget of a landfill, however, it was applied to determine the water budget of the DTQ following mining. Using an environmental impact statement as the case study, modeling predictions indicated the DTQ will adequately drain the water being put into the system. The height of the groundwater table will rise slightly due to the mining excavations but no ponding will occur. The application of HELP model determined the water budget of the DTQ and can be used as a viable option for mining companies to demonstrate how land can be reclaimed following mining operations.
Resumo:
Stable isotope analysis of two species (or groups of species) of planktonic foraminifers: Globigerinoides ruber (or G. obliquus and G. obliquus extremus) and Globigerina bulloides (or G. falconensis and G. obesa) from ODP Hole 653A and Site 654 in the Tyrrhenian basin, records the Pliocene-Pleistocene glacial history of the Northern Hemisphere. The overall increase in mean d18O values through the interval 4.6-0.08 Ma is 1.7 per mil for G. bulloides and 1.5 per mil for G. ruber. The time interval 3.1-2.5 Ma corresponds to an important phase of 18O enrichment for planktonic foraminifers. In this interval, glacial d18O values of both species G. bulloides and G. ruber increase by about l per mil, this increase being more progressive for G. ruber than for G. bulloides. The increase of interglacial d18O values is higher for G. bulloides (1.5 per mil) than for the Gruber group (1 per mil). These data suggest a more pronounced seasonal stratification of the water masses during interglacial phases. Large positive d18O fluctuations of increasing magnitude are also recorded at 2.25 and 2.15 Ma by G bulloides and appear to be diachronous with those of Site 606 in the Atlantic Ocean. Other events of increasing d18O values are recorded between 1.55 and 1.3 Ma, at 0.9 Ma, 0.8 Ma, and near 0.34 Ma. In the early Pliocene the d18O variability recorded by the planktonic species G. bulloides was higher in the Mediterranean than in the Atlantic at the same latitude. This suggests that important cyclic variations in the water budget of the Mediterranean occurred since that time. Step increases in the d18O variability are synchronous with those of the open ocean at 0.9 and 0.34 Ma. The higher variability as well as the higher amplitude of the peaks of 18O enrichment may be partly accounted for by increase of dryness over the Mediterranean area. In particular the high amplitude d18O fluctuations recorded between 3.1 and 2.1 Ma are correlated with the onset of a marked seasonal contrast and a summer dryness, revealed by pollen analyses. Strong fluctuations towards d13C values higher than modern ones are recorded by the G. ruber group species before 1.7 Ma and suggest a high production of phytoplankton. When such episodes of high primary production are correlated with episodes of decreasing 13C content of G. bulloides, they are interpreted as the consequence of a higher stratification of the upper water masses resulting itself from a marked seasonality. Such episodes occur between 4.6 and 4.05 Ma, 3.9 and 3.6 Ma, and 3.25 and 2.66 Ma. The interval 2.66-1.65 Ma corresponds to a weakening of the stratification of the upper water layers. This may be related to episodes of cooling and increasing dryness induced by the Northern Hemisphere Glaciations. The Pleistocene may have been a less productive period. The transition from highly productive to less productive surface waters also coincides with a new step increase in dryness and cooling, between 1.5 and 1.3 Ma. The comparison of the 13C records of G ruber and G. bulloides in fact suggests that a high vertical convection became a dominant feature after 2.6 Ma. Increases in the nutrient input and the stratification of the upper water masses may be suspected, however, during short episodes near 0.86 Ma (isotopic stage 25), 0.57-0.59 Ma (isotopic stage 16), 0.49 Ma (isotopic stage 13), 0.4-0.43 Ma (isotopic stage 11), and 0.22 and 0.26 Ma (part of isotopic stage 7 and transition 7/8). In fact, changes in the C02 balance within the different water masses of the Tyrrhenian basin as well as in the local primary production did not follow the general patterns of the open ocean.
Resumo:
The late Miocene sediments of the Tyrrhenian ODP Site 654 encompass a deepening sequence which begins with glauconite shallow water sands followed by a rapid transition to deep water sediments and culminates with dolomitic mudstones associated with Messinian evaporites. The sequence compares well with the so-called 'Sahelian cycle' and with post-orogenic cycles recognized in peninsular Italy and Sicily. The studied interval, consisting of 55 m thick nannofossil oozes, belongs to the Globorotalia suterae subzone and lower part of the Globorotalia conomiozea Zone, indicating late Tortonian and early Messinian age, respectively. Biomagnetostratigraphic correlation assigns the Tortonian/ Messinian boundary an age of 6.44-6.45 Ma. In addition, six main events have been recognized, based on the range of keeled globorotaliids and coiling direction changes of keeled and unkeeled globorotaliids, which have been correlated to the geomagnetic time-scale. Comparison with North Atlantic sites and land sections of the Guadalquivir basin and northern Morocco provides good correlations with the events documented in these areas. In particular, Event IV, which predates the FO of Globorotalia conomiozea, may be used to recognize the Tortonian/Messinian boundary in extra-Mediterranean areas where G. conomiozea is missing. Variations in the distribution of different species of Globigerinoides are related to changes in the surficial marine environment. Although no clear trends can be recognized on the oxygen and carbon isotope records of Globigerinoides obliquus, the parallelism between the occurrence of low salinity species (G. sacculifer) and peaks of low 5180 values, as well as that of normal salinity species (G. obliquus) and peaks of high d18O values, suggests strong local changes of environmental conditions. The high amplitude of the fluctuations of d18O values suggests important variations in the salinity of the Tyrrhenian Sea, related to a rapidly changing water budget. The major feature of the carbon isotope record is a large decrease between 7.0 and 6.95 Ma, which therefore predates the 6.2 Ma global 'carbon shift'.
Resumo:
The age of the subducting Nazca Plate off Chile increases northwards from 0 Ma at the Chile Triple Junction (46°S) to 37 Ma at the latitude of Valparaíso (32°S). Age-related variations in the thermal state of the subducting plate impact on (a) the water influx to the subduction zone, as well as on (b) the volumes of water that are released under the continental forearc or, alternatively, carried beyond the arc. Southern Central Chile is an ideal setting to study this effect, because other factors for the subduction zone water budget appear constant. We determine the water influx by calculating the crustal water uptake and by modeling the upper mantle serpentinization at the outer rise of the Chile Trench. The water release under forearc and arc is determined by coupling FEM thermal models of the subducting plate with stability fields of water-releasing mineral reactions for upper and lower crust and hydrated mantle. Results show that both the influx of water stored in, and the outflux of water released from upper crust, lower crust and mantle vary drastically over segment boundaries. In particular, the oldest and coldest segments carry roughly twice as much water into the subduction zone as the youngest and hottest segments, but their release flux to the forearc is only about one fourth of the latter. This high variability over a subduction zone of < 1500 km length shows that it is insufficient to consider subduction zones as uniform entities in global estimates of subduction zone fluxes. This article is protected by copyright. All rights reserved.
Resumo:
Geochemical and geophysical approaches have been used to investigate the freshwater and saltwater dynamics in the coastal Biscayne Aquifer and Biscayne Bay. Stable isotopes of oxygen and hydrogen, and concentrations of Sr2+ and Ca2+ were combined in two geochemical mixing models to provide estimates of the various freshwater inputs (precipitation, canal water, and groundwater) to Biscayne Bay and the coastal canal system in South Florida. Shallow geophysical electromagnetic and direct current resistivity surveys were used to image the geometry and stratification of the saltwater mixing zone in the near coastal (less than 1km inland) Biscayne Aquifer. The combined stable isotope and trace metal models suggest a ratio of canal input-precipitation-groundwater of 38%–52%–10% in the wet season and 37%–58%–5% in the dry season with an error of 25%, where most (20%) of the error was attributed to the isotope regression model, while the remaining 5% error was attributed to the Sr2+/Ca2+ mixing model. These models suggest rainfall is the dominate source of freshwater to Biscayne Bay. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for less than 2% of the total input. A similar Sr 2+/Ca2+ tracer model indicates precipitation is the dominate source in 9 out of 10 canals that discharge into Biscayne Bay. The two-component mixing model converged for 100% of the freshwater canal samples in this study with 63% of the water contributed to the canals coming from precipitation and 37% from groundwater inputs ±4%. There was a seasonal shift from 63% precipitation input in the dry season to 55% precipitation input in the wet season. The three end-member mixing model converged for only 60% of the saline canal samples possibly due to non-conservative behavior of Sr2+ and Ca2+ in saline groundwater discharging into the canal system. Electromagnetic and Direct Current resistivity surveys were successful at locating and estimating the geometry and depth of the freshwater/saltwater interface in the Biscayne Aquifer at two near coastal sites. A saltwater interface that deepened as the survey moved inland was detected with a maximum interpreted depth to the interface of 15 meters, approximately 0.33 km inland from the shoreline. ^
Resumo:
Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.
Resumo:
Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.
Resumo:
Drought during grain filling is a common challenge for sorghum production in north-eastern Australia, central-western India, and sub-Saharan Africa. We show that the stay-green drought adaptation trait enhances sorghum grain yield under post-anthesis drought in these three regions. A positive relationship between stay-green and yield was generally found in breeding trials in north-eastern Australia that sampled 1668 unique hybrid combinations and 23 environments. Physiological studies in Australia also found that introgressing four individual stay-green (Stg1–4) quantitative trait loci (QTLs) into a senescent background reduced water demand before flowering and hence increased water supply during grain filling, resulting in higher grain yield relative to the senescent control. Studies in India found that various Stg QTLs affected both transpiration and transpiration efficiency, although these effects depended on the interaction between genetic background (S35 and R16) and individual QTLs. The yield variation unexplained by harvest index was related to transpiration efficiency in S35 (R2 = 0.29) and R16 (R2 = 0.72), and was related to total water extracted in S35 (R2 = 0.41) but not in R16. Finally, sixty-eight stay-green enriched lines were evaluated in six countries in sub-Saharan Africa during the 2013/14 season. Analysis of the data from Kenya indicates that stay-green and grain size were positively correlated at two sites: Kiboko (high yielding, r2=0.25) and Masongaleni (low yielding, r2=0.37). Together, these studies suggest that stay-green is a beneficial trait for sorghum production in the semi-arid tropics and is a consequence of traits altering the plant water budget.
Resumo:
A conceptual scheme for the transition from winter to spring is developed for a small Arctic estuary (Churchill River, Hudson Bay) using hydrological, meteorological and oceanographic data together with models of the landfast ice. Observations within the Churchill River estuary and away from the direct influence of the river plume (Button Bay), between March and May 2005, show that both sea ice (production and melt) and river water influence the region's freshwater budget. In Button Bay, ice production in the flaw lead or polynya of NW Hudson Bay result in salinization through winter until the end of March, followed by a gradual freshening of the water column through April-May. In the Churchill Estuary, conditions varied abruptly throughout winter-spring depending on the physical interaction among river discharge, the seasonal landfast ice, and the rubble zone along the seaward margin of the landfast ice. Until late May, the rubble zone partially impounded river discharge, influencing the surface salinity, stratification, flushing time, and distribution and abundance of nutrients in the estuary. The river discharge, in turn, advanced and enhanced sea ice ablation in the estuary by delivering sensible heat. Weak stratification, the supply of riverine nitrogen and silicate, and a relatively long flushing time (~6 days) in the period preceding melt may have briefly favoured phytoplankton production in the estuary when conditions were still poor in the surrounding coastal environment. However, in late May, the peak flow and breakdown of the ice-rubble zone around the estuary brought abrupt changes, including increased stratification and turbidity, reduced marine and freshwater nutrient supply, a shorter flushing time, and the release of the freshwater pool into the interior ocean. These conditions suppressed phytoplankton productivity while enhancing the inventory of particulate organic matter delivered by the river. The physical and biological changes observed in this study highlight the variability and instability of small frozen estuaries during winter-spring transition, which implies sensitivity to climate change.