924 resultados para wastewater sludge
Resumo:
In this work, the efficiency of two-stage upflow anaerobic sludge blanket (UASB) reactors was evaluated in bench scale, for treating a liquid effluent from coffee pulping. Hydraulic detention times (HDT) were 4.0; 5.2 and 6.2 days, resulting in organic loading rates (OLR) of 5.8; 3.6 and 3.0g total COD per (L-d) in the first reactor (Rl) and HDT of 2.0; 2.6 and 3.1 days with OLR of 5.8; 0.5 and 0.4 g total COD per (L-d) in the second reactor (R2). The medium values of total COD affluent varied from 15.440 to 23.040 mg O 2/L, and in the effluent to the reactors 1 and 2 were from l.lOO to 11.500 mg 0 2/L and 420 to 9.000 mg O 2/L, respectively. The medium values of removal efficiencies of total COD and TSS varied from 66 to 98% and 93 to 97%, respectively, in the system of treatment with the UASB reactors, in two stages. The content of methane in the biogas varied from 69 to 89% in the Rl and from 52 to 73% in the R2. The maximum volumetric methane production of 0.483 m 3 CH 4per (m 3 reactor d) was obtained with OLR of 3.6 g total COD per (L reactor d) and HDT of 6.2 days in the Rl. The volatile fatty acids concentration was kept below 100mg/L with HDT of 5.2 and 6.2 days in the Rl and HDT of 2.6 and 3.1 days in the R2.
Resumo:
In this study it was evaluated the efficiency of the treatment of wet-processed coffee wastewater in upflow anaerobic sludge blanket (UASB) reactors in two stages, in bench scale, followed by post-treatment with activated sludge in batch. The first UASB reactor was submitted to an hydraulic retention time (HRT) of 6.2 d and organic loading rates (OLR) of 2.3 and 4.5g CODtotal (L d)-1, and the second UASB reactor to HRT of 3.1 d with OLR of 0.4 and 1.4g CODtotal (L d)-1. The average values of the affluent CODtotal increased from 13,891 to 27,926mg L-1 and the average efficiencies of removal of the CODtotal decreased from 95 to 91%, respectively, in the UASB reactors in two stages. The volumetric methane production increased from 0.274 to 0.323L CH4 (L reactor d)-1 with increment in the OLR. The average concentrations of total phenols in the affluent were of 48 and 163mg L-1, and the removal efficiencies in the UASB reactors in two stages of 92 and 90%, respectively, and increased to 97% with post-treatment. The average values of the removal efficiencies of total nitrogen and phosphorus were of 57 to 80% and 44 to 60%, respectively, in the UASB reactors in two stages and increased to 91 and 84% with the post-treatment.
Resumo:
A bench-scale treatability study was conducted on a high-strength wastewater from a chemical plant to develop an alternative for the existing waste stabilization pond treatment system. The objective of this study was to determine the treatability of the wastewater by the activated sludge process and, if treatable, to determine appropriate operating conditions, and to evaluate the degradability of bis(2-chloroethyl)ether (Chlorex) and benzene in the activated sludge system. Four 4-L Plexi-glass, complete mixing, continuous flow activated sludge reactors were operated in parallel under different operating conditions over a 6-month period. The operating conditions examined were hydraulic retention time (HRT), sludge retention time (SRT), nutrient supplement, and Chlorex/benzene spikes. Generally the activated sludge system treating high-strength wastewater was stable under large variations of organic loading and operating conditions. At an HRT of 2 days, more than 90% removal efficiency with good sludge settleability was achieved when the organic loading was less than 0.4 g BOD$\sb5$/g MLVSS/d or 0.8 g COD/g MLVSS/d. At least 20 days of SRT was required to maintain steady operation. Phosphorus addition enhanced the performance of the system especially during stressed operation. On the average, removals of benzene and Chlorex were 73-86% and 37-65%, respectively. In addition, the low-strength wastewater was treatable by activated sludge process, showing more than 90% BOD removal at a HRT of 0.5 days. In general, the sludge had poor settling characteristics. The aerated lagoon process treating high-strength wastewater also provided significant organic reduction, but did not produce an acceptable effluent concentration. ^
Resumo:
Póster presentado en 19th International Congress of Chemical and Process Engineering, Prague, Czech Republic August 28th-September 1st, 2010.
Resumo:
Issued Dec. 1979.
Resumo:
"A current report on solid waste management"--Cover.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The possibility of thermal treatment plants of municipal wastewater is an alternative solution for the final disposition of the sludge produced on small cities as Barueri, a small town of São Paulo State, Brazil. Combustion and pyrolysis of that municipal waste, occurring respectively in air and nitrogen, have been studied by thermogravimetry (TG) and differential thermal analysis (DTA). The main steps of each case were analyzed and Kissinger plots were used to estimate respective activation energies. DTG peaks are more indicated to represent the condition of maximum reaction rates than DTA peaks.
Resumo:
The effect of a lipase-rich fungal enzymatic preparation, produced by a Penicillium sp. during solid-state fermentation, was evaluated in an anaerobic digester treating dairy wastewater with 1200 mg of oil and grease/L The oil and grease hydrolysis step was carried out with 0.1% (w/v) of solid enzymatic preparation at 30 degrees C for 24 h, and resulted in a final free acid concentration eight times higher than the initial value. The digester operated in sequential batches of 48 h at 30 degrees C for 245 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. However, when the pre-hydrolysis step was removed, the anaerobic digester performed poorly (with an average COD removal of 32%), as the oil and grease accumulated in the biomass and effluent oil and grease concentration increased throughout the operational period. PCR-DGGE analysis of the Bacteria and Archaea domains revealed remarkable differences in the microbial profiles in trials conducted with and without the pre-hydrolysis step, indicating that differences observed in overall parameters were intrinsically related to the microbial diversity of the anaerobic sludge. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The production of hydrogen from soft-drink wastewater in two upflow anaerobic packed-bed reactors was evaluated. The results show that soft-drink wastewater is a good source for hydrogen generation. Data from both reactors indicate that the reactor without medium containing macro- and micronutrients (R2) provided a higher hydrogen yield (3.5 mol H(2) mol(-1) of sucrose) as compared to the reactor (R1) with a nutrient-containing medium (3.3 mol H(2) mol(-1) of sucrose). Reactor R2 continuously produced hydrogen, whereas reactor R1 exhibited a short period of production and produced lower amounts of hydrogen. Better hydrogen production rates and percentages of biogas were also observed for reactor R2, which produced 0.4 L h(-1) L(-1) and 15.8% of H(2), compared to reactor R1, which produced 0.2 L h(-1) L(-1) and 2.6% of H(2). The difference in performance between the reactors was likely due to changes in the metabolic pathway for hydrogen production and decreases in bed porosity as a result of excessive biomass growth in reactor R1. Molecular biological analyses of samples from reactors R1 and R2 indicated the presence of several microorganisms, including Clostridium (91% similarity), Enterobacter (93% similarity) and Klebsiella (97% similarity). Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper reports on the design of a new reactor configuration - an upflow fixed-bed combined anaerobic-aerobic reactor - can operate as a single treatment unit for the removal of nitrogen (approximate to 150 mg N/L) and organic matter (approximate to 1300 mg COD/L) from Lysine plant wastewater. L-Lysine, an essential amino acid for animal nutrition, is produced by fermentation from natural raw materials of agricultural origin, thus generating wastewater with high contents of organic matter and nitrogen. The best operational condition of the reactor was obtained with a hydraulic retention time of 35 h (21 h in the anaerobic zone and 14 h in the aerobic zone) and a recycling ratio (R) of 3.5. In this condition, the COD, total Kjeldahl nitrogen (TKN), and total nitrogen (TN) removal efficiencies were 97%, 96%, and 77%, respectively, with average effluent concentrations of 10 +/- 36 mg COD/L, 2 +/- 1 mg NH(4)(+)-N/L, 8 +/- 3 mg Org-N/L, 1 +/- 1 mg NH(2)(-)-N/L, and 26 +/- 23 mg NH(3)(-)-N/L.
Resumo:
A broader characterization of industrial wastewaters, especially in respect to hazardous compounds and their potential toxicity, is often necessary in order to determine the best practical treatment (or pretreatment) technology available to reduce the discharge of harmful pollutants to the environment or publicly owned treatment works. Using a toxicity-directed approach, this paper sets the base for a rational treatability study of polyester resin manufacturing. Relevant physical and chemical characteristics were determined. Respirometry was used for toxicity reduction evaluation after physical and chemical effluent fractionation. Of all the procedures investigated, only air stripping was significantly effective in reducing wastewater toxicity. Air stripping in pH 7 reduced toxicity in 18.2%, while in pH 11 a toxicity reduction of 62.5% was observed. Results indicated that toxicants responsible for the most significant fraction of the effluent`s instantaneous toxic effect to unadapted activated sludge were organic compounds poorly or not volatilized in acid conditions. These results led to useful directions for conducting treatability studies which will be grounded on actual effluent properties rather than empirical or based on the rare specific data on this kind of industrial wastewater. (C) 2008 Elsevier B.V. All rights reserved.