880 resultados para wastewater samples
Resumo:
Rwanda is a landlocked country located in Africa's Central-East Great Lakes region. It has a population of 7.5 million which occupies 26,338 km'. Its population density (285/km') is one of the highest in the world and has prompted fear of a rapid degradation of the ecosystem. There are no central sewer systems in Rwanda. The use of pit latrines and septic tanks is common in urban and rural areas. People still defecate in the fields (World Bank, 1989). Less than half of the urban population is served by a central water supply. The majority of people get their water untreated from rivers that have been polluted by chemicals and human excreta. In and around the capital city of Kigali, there is a concentration of people, farms, and industries which discharge wastewater into the Nyabarongo River and its tributaries. The Nyabarongo River, a tributary of the Nile, empties into the Akagera River which flows into Lake Victoria. Nyabarongo River water is used for drinking water, cooking, bathing, and agriculture in the Kigali area. There has been very little monitoring of the water quality of the Nyabarongo River and of industrial outfalls located on tributaries of the Nyabarongo River. As a first step in understanding the water quality of the Nyabarongo River, wastewater samples were collected in 1993 from industrial outfalls located on tributaries of the Nyabarongo River. Most of the facilities sampled had no wastewater treatment. The impact of these discharges on the water quality of the Nyabarongo River was evaluated.
Resumo:
Background: Ideally, bacteriophages of pathogenic bacterial hosts should be polyvalent to be able to replicate in an alternative nonpathogenic bacterium. Thus, accidental infection by the original host can be avoided when bacteriophage lysates are used in biocontrol protocols. Results: From 15 wastewater samples, collected at different sites in the V Region in Chile, we selected three bacteriophages (FC, FP, and FQ) capable of productively infecting Salmonella enterica serovar Choleraesuis. By transmission electron microscopy (TEM) observation, the bacteriophages were found to belong to the order Caudoviridae. Molecular analyses indicated that FC, FP, and FQ contained double-stranded DNA genomes, of sizes similar to bacteriophage P22, and distinct recognition sites for the restriction endonucleases HaeIII and HindIII. Assays of host range revealed that the bacteriophages were polyvalent and thus capable of infecting different strains of Escherichia coli and other serovars of Salmonella . Conclusion: We have isolated newbacteriophages of the serovar Choleraesuiswith various potential applications in relation to this pathogenic bacterium.
Resumo:
Novel magnetic carbon xerogels consisting of interconnected carbon microspheres with iron and/or cobalt microparticles embedded in their structure were developed by a simple route. As inferred from the characterization data, materials with distinctive properties may be directly obtained upon inclusion of iron and/or cobalt precursors during the sol-gel polymerization of resorcinol and formaldehyde, followed by thermal annealing. The unique properties of these magnetic carbon xerogels were explored in the catalytic wet peroxide oxidation (CWPO) of an antimicrobial agent typically found throughout the urban water cycle – sulfamethoxazole (SMX). A clear synergistic effect arises from the inclusion of cobalt and iron in carbon xerogels (CX/CoFe),the resulting magnetic material revealing a better performance in the CWPO of SMX at the ppb level(500 microg L−1) when compared to that of monometallic carbon xerogels containing only iron or cobalt.This effect was ascribed to the increased accessibility of highly active iron species promoted by the simultaneous incorporation of cobalt.The performance of the CWPO process in the presence of CX/CoFe was also evaluated in environmentally relevant water matrices, namely in drinking water and secondary treated wastewater, considered in addition to ultrapure water. It was found that the performance decreases when applied to more complex water and wastewater samples. Nevertheless, the ability of the CWPO technology for the elimination of SMX in secondary treated wastewater was unequivocally shown, with 96.8% of its initial content being removed after 6 h of reaction in the presence of CX/CoFe, at atmospheric pressure, room temperature(T = 25◦C), pH = 3, [H2O2]0= 500 mg L−1and catalyst load = 80 mg L−1. A similar performance (97.8% SMX removal) is obtained in 30 min when the reaction temperature is slightly increased up to 60◦C in an ultra-pure water matrix. Synthetic water containing humic acid, bicarbonate, sulphate or chloride, was also tested. The results suggest the scavenging effect of the different anions considered, as well as the negative impact of dissolved organic matter typically found in secondary treated wastewater, as simulated by the presence of humic acid.An in-situ magnetic separation procedure was applied for catalyst recovery and re-use during reusability cycles performed to mimic real-scale applications. CWPO runs performed with increased SMX concentration (10 mg L−1), under a water treatment process intensification approach, allowed to evalu-ate the mineralization levels obtained, the antimicrobial activity of the treated water, and to propose adegradation mechanism for the CWPO of SMX.
Resumo:
Este trabalho teve como objectivo, o desenvolvimento de um método electroquímico, para quantificação do fármaco carbamazepina (CBZ) em águas contaminadas. Neste trabalho foram utilizados quatro métodos voltamétricos: a voltametria cíclica, a voltametria de varrimento linear, a voltametria de onda quadrada e a voltametria de impulso diferencial. Os eléctrodos de trabalho utilizados foram, o eléctrodo de mercúrio de gota suspensa, o eléctrodo de carbono vítreo clássico e um eléctrodo de carbono vítreo modificado com um filme de nanotubos de carbono de paredes múltiplas (MWCNTs). O eléctrodo de mercúrio de gota suspensa permitiu o estudo da redução da CBZ numa região de potencial mais catódico, e os eléctrodos de carbono vítreo, com e sem modificação, permitiram o estudo da oxidação da CBZ numa região de potencial mais anódico. Nas condições experimentais estudadas, o eléctrodo de mercúrio de gota suspensa revelou ser um sensor voltamétrico pouco eficaz na determinação quantitativa da carbamazepina, em amostras com uma matriz complexa. Entre os eléctrodos de carbono vítreo, o eléctrodo de carbono vítreo modificado com os MWCNTs revelou ser o sensor voltamétrico mais eficaz e sensível, na detecção e determinação da carbamazepina. Modificado com um filme de nanotubos de carbono de paredes múltiplas, que previamente foram dispersos em dihexadecilhidrogenofosfato (DHP) e água, este novo eléctrodo permitiu obter uma resposta electroquímica da CBZ, consideravelmente superior ao eléctrodo não modificado. Utilizando a voltametria de varrimento linear e as condições experimentais consideradas óptimas, o eléctrodo nanoestruturado permitiu obter uma relação linear entre o sinal medido e a concentração da CBZ no intervalo 0.13- 1.60 M (30.7- 378 g -1), com os limites de detecção e quantificação mais baixos, até à data reportados com métodos electroquímicos (0.04 e 0.14M, respectivamente). O eléctrodo modificado foi aplicado na quantificação da CBZ, em formulações farmacêuticas, em águas naturais tratadas e em amostras de águas residuais, ambas dopadas, obtendo-se taxas de recuperação consideravelmente elevadas (100.6%, 98.0%,95.8%, respectivamente). Os resultados obtidos, na análise da CBZ em amostras ambientais, com o eléctrodo modificado, foram comparados com resultados obtidos por HPLC-UV e LC ESI-MS/MS, validando o método electroquímico desenvolvido neste trabalho. ABSTRACT: The aim of this work was to develop a new electrochemical method for the quantification of carbamazepine (CBZ) in contaminated waters. ln this study, four voltammetric methods were used: cyclic voltammetry, linear sweep voltammetry, square wave voltammetry and differential pulse voltammetry. the working electrodes used were the hanging mercury drop electrode (HMDE), the classical glassy carbon electrode (GCE), and a glassy carbon electrode modified with a film of multi-walled carbon nanotubes (MWCNls). Using HMDE, the reduction of CBZ was studied in the cathodic potential region. the CGE sensors, with or without modification, allowed the study of CBZ oxidation in the anodic potential region. ln the tested conditions, the results obtained for the quantification of CBZ using the HMDE sensor were not very satisfactory, especially when more complex samples were analysed. When the MWCNls-dihexadecyl hydrogen phosphate (DHP) film coated GCE was used for the voltammetric determination of CBZ, the results obtained showed that this modified electrode exhibits excellent enhancement effects on the electrochemical oxidation of CBZ. the oxidation peak current of CBZ at this film modified electrode increased significantly, when compared with that at a bare glassy carbon electrode. The enhanced electrooxidation and voltammetry of CBZ at the surface of MWCNTs-DHP film coated GCE in phosphate buffer solution (pH 6.71) was attributed to the unique properties of MWCNTs such as large specific surface area and strong adsorptive properties providing more reaction sites. The proposed method was applied to the quantification of CBZ in pharmaceutical formulations, drinking water and wastewater samples with good recoveries and low limits of detection and quantification (0.04 and 0.14 M, respectively), and was positively compared with chromatographic techniques usually used in the quantification of pharmaceutical compounds in environmental samples. HPLC-UV and LC-ESI-MS/MS were also used in the quantification of CBZ in pharmaceutical formulations and wastewater samples to prove the importance and accuracy of his voltammetric method.
Resumo:
The use of organophosphate esters (PFRs) as flame retardants and plasticizers has increased due to the ban of some brominated flame retardants. There is however some concern regarding the toxicity, particularly carcinogenicity and neurotoxicity, of some of the PFRs. In this study we applied wastewater analysis to assess use of PFRs by the Australian population. Influent samples were collected from eleven wastewater treatment plants (STPs) in Australia on Census day and analysed for PFRs using gas chromatography coupled with mass spectrometry (GC-MS). Per capita mass loads of PFRs were calculated using the accurate Census head counts. The results indicate that tris(2-butoxyethyl) phosphate (TBOEP) has the highest per capita input into wastewater followed by tris(2-chloroisopropyl) phosphate (TCIPP), tris(isobutyl) phosphate (TIBP), tris(2-chloroethyl) phosphate (TCEP) and tris(1,3-dichloroisopropyl) phosphate (TDCIPP). Similar PFR profiles were observed across the Australian STPs and a comparison with European and U.S. STPs indicated similar PFR concentrations. We estimate that approximately 2.1 mg person−1 day−1 of PFRs are input into Australian wastewater which equates to 16 tonnes per annum.
Resumo:
Hepatitis E virus (HEV) is responsible for many enterically transmitted viral hepatitides around the world. It is currently one of the waterborne diseases of global concern. In industrialized countries, HEV appears to be more common than previously thought, even if it is rarely virulent. In Switzerland, seroprevalence studies revealed that HEV is endemic, but no information was available on its environmental spread. The aim of this study was to investigate -using qPCR- the occurrence and concentration of HEV and three other viruses (norovirus genogroup II, human adenovirus-40 and porcine adenovirus) in influents and effluents of 31 wastewater treatment plants (WWTPs) in Switzerland. Low concentrations of HEV were detected in 40 out of 124 WWTP influent samples, showing that HEV is commonly present in this region. The frequency of HEV occurrence was higher in summer than in winter. No HEV was detected in WWTP effluent samples, which indicates a low risk of environmental contamination. HEV occurrence and concentrations were lower than those of norovirus and adenovirus. The autochthonous HEV genotype 3 was found in all positive samples, but a strain of the non-endemic and highly pathogenic HEV genotype I was isolated in one sample, highlighting the possibility of environmental circulation of this genotype. A porcine fecal marker (porcine adenovirus) was not detected in HEV positive samples, indicating that swine are not the direct source of HEV present in wastewater. Further investigations will be necessary to determine the reservoirs and the routes of dissemination of HEV.
Resumo:
Background The onsite treatment of sewage and effluent disposal within the premises is widely prevalent in rural and urban fringe areas due to the general unavailability of reticulated wastewater collection systems. Despite the seemingly low technology of the systems, failure is common and in many cases leading to adverse public health and environmental consequences. Therefore it is important that careful consideration is given to the design and location of onsite sewage treatment systems. It requires an understanding of the factors that influence treatment performance. The use of subsurface effluent absorption systems is the most common form of effluent disposal for onsite sewage treatment and particularly for septic tanks. Additionally in the case of septic tanks, a subsurface disposal system is generally an integral component of the sewage treatment process. Therefore location specific factors will play a key role in this context. The project The primary aims of the research project are: • to relate treatment performance of onsite sewage treatment systems to soil conditions at site; • to identify important areas where there is currently a lack of relevant research knowledge and is in need of further investigation. These tasks were undertaken with the objective of facilitating the development of performance based planning and management strategies for onsite sewage treatment. The primary focus of the research project has been on septic tanks. Therefore by implication the investigation has been confined to subsurface soil absorption systems. The design and treatment processes taking place within the septic tank chamber itself did not form a part of the investigation. In the evaluation to be undertaken, the treatment performance of soil absorption systems will be related to the physico-chemical characteristics of the soil. Five broad categories of soil types have been considered for this purpose. The number of systems investigated was based on the proportionate area of urban development within the Brisbane region located on each soil types. In the initial phase of the investigation, though the majority of the systems evaluated were septic tanks, a small number of aerobic wastewater treatment systems (AWTS) were also included. This was primarily to compare the effluent quality of systems employing different generic treatment processes. It is important to note that the number of different types of systems investigated was relatively small. As such this does not permit a statistical analysis to be undertaken of the results obtained. This is an important issue considering the large number of parameters that can influence treatment performance and their wide variability. The report This report is the second in a series of three reports focussing on the performance evaluation of onsite treatment of sewage. The research project was initiated at the request of the Brisbane City Council. The work undertaken included site investigation and testing of sewage effluent and soil samples taken at distances of 1 and 3 m from the effluent disposal area. The project component discussed in the current report formed the basis for the more detailed investigation undertaken subsequently. The outcomes from the initial studies have been discussed, which enabled the identification of factors to be investigated further. Primarily, this report contains the results of the field monitoring program, the initial analysis undertaken and preliminary conclusions. Field study and outcomes Initially commencing with a list of 252 locations in 17 different suburbs, a total of 22 sites in 21 different locations were monitored. These sites were selected based on predetermined criteria. To obtain house owner agreement to participate in the monitoring study was not an easy task. Six of these sites had to be abandoned subsequently due to various reasons. The remaining sites included eight septic systems with subsurface effluent disposal and treating blackwater or combined black and greywater, two sites treating greywater only and six sites with AWTS. In addition to collecting effluent and soil samples from each site, a detailed field investigation including a series of house owner interviews were also undertaken. Significant observations were made during the field investigations. In addition to site specific observations, the general observations include the following: • Most house owners are unaware of the need for regular maintenance. Sludge removal has not been undertaken in any of the septic tanks monitored. Even in the case of aerated wastewater treatment systems, the regular inspections by the supplier is confined only to the treatment system and does not include the effluent disposal system. This is not a satisfactory situation as the investigations revealed. • In the case of separate greywater systems, only one site had a suitably functioning disposal arrangement. The general practice is to employ a garden hose to siphon the greywater for use in surface irrigation of the garden. • In most sites, the soil profile showed significant lateral percolation of effluent. As such, the flow of effluent to surface water bodies is a distinct possibility. • The need to investigate the subsurface condition to a depth greater than what is required for the standard percolation test was clearly evident. On occasion, seemingly permeable soil was found to have an underlying impermeable soil layer or vice versa. The important outcomes from the testing program include the following: • Though effluent treatment is influenced by the physico-chemical characteristics of the soil, it was not possible to distinguish between the treatment performance of different soil types. This leads to the hypothesis that effluent renovation is significantly influenced by the combination of various physico-chemical parameters rather than single parameters. This would make the processes involved strongly site specific. • Generally the improvement in effluent quality appears to take place only within the initial 1 m of travel and without any appreciable improvement thereafter. This relates only to the degree of improvement obtained and does not imply that this quality is satisfactory. This calls into question the value of adopting setback distances from sensitive water bodies. • Use of AWTS for sewage treatment may provide effluent of higher quality suitable for surface disposal. However on the whole, after a 1-3 m of travel through the subsurface, it was not possible to distinguish any significant differences in quality between those originating from septic tanks and AWTS. • In comparison with effluent quality from a conventional wastewater treatment plant, most systems were found to perform satisfactorily with regards to Total Nitrogen. The success rate was much lower in the case of faecal coliforms. However it is important to note that five of the systems exhibited problems with regards to effluent disposal, resulting in surface flow. This could lead to possible contamination of surface water courses. • The ratio of TDS to EC is about 0.42 whilst the optimum recommended value for use of treated effluent for irrigation should be about 0.64. This would mean a higher salt content in the effluent than what is advisable for use in irrigation. A consequence of this would be the accumulation of salts to a concentration harmful to crops or the landscape unless adequate leaching is present. These relatively high EC values are present even in the case of AWTS where surface irrigation of effluent is being undertaken. However it is important to note that this is not an artefact of the treatment process but rather an indication of the quality of the wastewater generated in the household. This clearly indicates the need for further research to evaluate the suitability of various soil types for the surface irrigation of effluent where the TDS/EC ratio is less than 0.64. • Effluent percolating through the subsurface absorption field may travel in the form of dilute pulses. As such the effluent will move through the soil profile forming fronts of elevated parameter levels. • The downward flow of effluent and leaching of the soil profile is evident in the case of podsolic, lithosol and kransozem soils. Lateral flow of effluent is evident in the case of prairie soils. Gleyed podsolic soils indicate poor drainage and ponding of effluent. In the current phase of the research project, a number of chemical indicators such as EC, pH and chloride concentration were employed as indicators to investigate the extent of effluent flow and to understand how soil renovates effluent. The soil profile, especially texture, structure and moisture regime was examined more in an engineering sense to determine the effect of movement of water into and through the soil. However it is not only the physical characteristics, but the chemical characteristics of the soil also play a key role in the effluent renovation process. Therefore in order to understand the complex processes taking place in a subsurface effluent disposal area, it is important that the identified influential parameters are evaluated using soil chemical concepts. Consequently the primary focus of the next phase of the research project will be to identify linkages between various important parameters. The research thus envisaged will help to develop robust criteria for evaluating the performance of subsurface disposal systems.
Resumo:
Introduction and Aims Wastewater analysis (WWA) is intended to be a direct and objective method of measuring substance use in large urban populations. It has also been used to measure prison substance use in two previous studies. The application of WWA in this context has raised questions as to how best it might be used to measure illicit drug use in prisons, and whether it can also be used to measure prescription misuse. We applied WWA to a small regional prison to measure the use of 12 licit and illicit substances. We attempted to measure the non-medical use of methadone and buprenorphine and to compare our findings with the results of the prison's mandatory drug testing (MDT). Design and Methods Representative daily composite samples were collected for two periods of 12 consecutive days in May to July 2013 and analysed for 18 drug metabolites. Prescription data and MDT results were obtained from the prison and compared with the substance use estimates calculated from WWA data. Results Daily use of methamphetamine, methadone, buprenorphine and codeine was detected, while sporadic detection of ketamine and methylone was also observed. Overall buprenorphine misuse appeared to be greater than methadone misuse. Discussion and Conclusions Compared with MDT, WWA provides a more comprehensive picture of prison substance use. WWA also has the potential to measure the misuse of medically prescribed substances. However, a great deal of care must be exercised in quantifying the usage of any substance in small populations, such as in prisons.
Resumo:
Estimating the use of illicit drugs in the general community is an important task with ramifications for law enforcement agencies, as well as health portfolios. Australia has four ongoing drug monitoring systems, including the AIC’s DUMA program, the National Drug Strategy Household Survey, the Illicit Drug Reporting System and the Ecstasy and Related Drug Reporting System. The systems vary in methods, but broadly they are reliant upon self-report data and may be subject to selection biases. The present study employed a completely different method. By chemically analysing sewerage water, the study produced daily estimates of consumption of methamphetamine, MDMA and cocaine. Samples were collected in November 2009 and November 2010 from a municipality in Queensland, with an population of over 150,000 people. Estimates were made of the average daily dose and average daily street value per 1,000 people. On the basis of estimated dose and price, the methamphetamine market appeared considerably stronger than either MDMA or cocaine. This paper explains the strengths and weaknesses of wastewater analysis. It considers the potential value of wastewater analysis in measuring net consumption of illicit drugs and the effectiveness of law enforcement agency strategies.
Resumo:
Anaerobic digestion is a viable on-site treatment technology for rich organic waste streams such as food waste and blackwater. In contrast to large-scale municipal wastewater treatment plants which are typically located away from the community, the effluent from any type of on-site system is a potential pathogenic hazard because of the intimacy of the system to the community. The native concentrations of the pathogen indicators Escherichia coli, Clostridium perfringens and somatic coliphage were tracked for 30 days under stable operation (organic loading rate (OLR) = 1.8 kgCOD m(-3) day(-1), methane yield = 52% on a chemical oxygen demand (COD) basis) of a two-stage laboratory-scale digester treating a mixture of food waste and blackwater. E. coli numbers were reduced by a factor of 10(6.4) in the thermophilic stage, from 10(7.5+/-0.3) to 10(1.1+/-0.1) cfu 100 mL(-1), but regenerated by a factor of 10(4) in the mesophilic stage. Neither the thermophilic nor mesophilic stages had any significant impact on C. perfringens concentrations. Coliphage concentrations were reduced by a factor of 10(1.4) across the two stages. The study shows that anaerobic digestion only reduces pathogen counts marginally but that counts in effluent samples could be readily reduced to below detection limits by filtration through a 0.22 microm membrane, to investigate membrane filtration as a possible sanitation technique.
Resumo:
A new diazotizing reagent for the spectrophotometric determination of nitrite is described. The method is based on diazotization-coupling reaction between dapsone and phloroglucinol in hydrochloric acid medium. The reactions were conducted at room temperature, the molor absorptivity at 425 nm is 4.28 x 10(4) 1 Mol, (1)cm(-1) and was stable for 50 h. Beer's law was obeyed in the nitrite range of 0.008 - 1.0 mug ml(-1). Tolerance limits were tested for 33 species. The method has been found to be applicable for the determination of nitrite in natural and wastewater.
Resumo:
A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with fluorescence detection has been developed. 9-(2-Hydroxyethyl)acridone reacts with coupling agent N,N-carbonyldiimidazole at ambient temperature to form activated amide intermediate 9-(2-acridone)oxyethylcarbonylimidazole (AOCD). The amide intermediate (AOCD) preferably reacts with amino compounds under mild reactions in the presence of 4-(dimethylamino)pyridine (base catalyst) in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum lambda(ex) 404 mn and an emission maximum at lambda(em) 440 nm. The labeled derivatives exhibit high stability under reversed-phase conditions. The fluorescence intensities of derivatives in various solvents or at different temperatures were investigated. The method, in conjunction with a gradient elution, offers a baseline resolution of the common amine derivatives on a reversed-phase C-18 column. The LC separation for the derivatized amines shows good reproducibility with acetonitrile-water including 2.5% DMF as mobile phase. The relative standard deviations (n = 6) for each amine derivative are <4.5%. The detection limits (at a signal-to-noise ratio of 3) per injection were 0.16-12.8 ng/mL. Further research for the field of application, based on the AOCD amide intermediate as derivatization reagent, for the determination of free amines in real water samples is achieved.
Resumo:
A pre-column derivatization method for the sensitive determination of aliphatic amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by HPLC with fluorescence detection and APCI/NIS identification in positive-ion mode has been developed. The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by the 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent, BCEOC, that could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M + H](+) with APCI/MS in positive-ion mode. The collision induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 264.1, m/z 246.0 and m/z 218.1, corresponding to the cleavages of CH2CH2O-CO, CH2CH2-OCO, and N-CH2CH2O bonds. Studies on derivatization conditions demonstrated that excellent derivatization yields close to 100% were observed with a 3 to 4-fold molar reagent excess in acetonitrile solvent, in the presence of borate buffer (pH 9.0) at 40 degrees C for 10 min. In addition, the detection responses for BCEOC derivatives were compared with those obtained with CEOC and FMOC as labeling reagents. The ratios I-BCEOC/I-CEOC and I-BCEOC/I-FMOC were, respectively, 1.40-2.76 and 1.36-2.92 for fluorescence responses (here, I was the relative fluorescence intensity). Separation of the amine derivatives had been optimized on an Eclipse XDB-C-8 column. Detection limits calculated from an 0.10 pmol injection, at a signal-to-noise ratio of 3, were 18.65-38.82 fmol (injection volume 10 mu L for fluorescence detection. The relative standard deviations for intraday determination (n = 6) of standard amine derivatives (50 pmol) were 0.0063-0.037% for retention times and 3.36-6.93% for peak areas. The mean intra-and inter-assay precision for all amines were <5.4% and 5.8%, respectively. The recoveries of amines ranged from 96 to 113%. Excellent linear responses were observed with correlation coefficients of >0.9994. The established method provided a simple and highly sensitive technique for the quantitative analysis of trace amounts of aliphatic amines from biological and natural environmental samples.
Resumo:
The concentrations of 12 pharmaceutical compounds (atenolol, erythromycin, cyclophosphamide, paracetamol, bezafibrate, carbamazepine, ciprofloxacin, caffeine, clarithromycin, lidocaine, sulfamethoxazole and Nacetylsulfamethoxazol (NACS)) were investigated in the influents and effluents of two hospital wastewater treatment plants (HWWTPs) in Saudi Arabia. The majority of the target analytes were detected in the influent samples apart from bezafibrate, cyclophosphamide, and erythromycin. Caffeine and paracetamol were detected in the influent at particularly high concentrations up to 75 and 12 ug/L, respectively. High removal efficiencies of the pharmaceutical compounds were observed in both HWWTPs, with greater than 90 % removal on average. Paracetamol, sulfamethoxazole, NACS, ciprofloxacin, and caffeine were eliminated by between >95 and >99 % on average. Atenolol, carbamazepine, and clarithromycin were eliminated by >86 % on average. Of particular interest were the high removal efficiencies of carbamazepine and antibiotics that were achieved by the HWWTPs; these compounds have been reported to be relatively recalcitrant to biological treatment and are generally only partially removed. Elevated temperatures and high levels of sunlight were considered to be the main factors that enhanced the removal of these compounds.
Resumo:
This paper presents a comparative study on the treatment of high-strength animal wastewater in two parallel lab-scale constructed reed bed systems, progressively-sized system and anti-sized system, which have same configuration but different arrangement of bed media. The reed bed systems were operated in a tidal flow pattern to treat diluted pig slurry. Detailed analyses were carried out for the removal of some key pollutants including COD, BOD5, NH4-N, P and suspended solids. The results showed that both systems have considerable capacity for the removal of solids, organic matter and inorganic nutrients. The formation of biofilms on the surfaces of gravel media in both reed bed systems was monitored by scanning selected gravel samples using scanning electron microscopy. In general, no significant difference was detected with regard to the percentage pollutant removal in the systems. However, the anti-sized system demonstrated a clear advantage in its ability to slow down the clogging of bed media and avoid the impairment of long-term functioning and sustainability of the beds. A conceptual model was developed to predict the occurrence of the clogging. The validity of the model was tested using data from this study and from the literatures.