264 resultados para voltametria de redissolução catódica
Resumo:
Iron nitrite films, with hundred of nanometers thick, were deposited using the Cathodic cage plasma nitriding method, with a N2/H2 plasma, over a common glass substract. The structure, surface morphology and magnetic properties were investigated using X-ray diffractometry (XRD), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). XRD shows the formation of γ FeN phase and a combination of ζFe2N + ɛFe3N phases. The film s saturation magnetization and coercivity depends on morphology, composition, grain size and treatment temperature. Temperature raising from 250 ºC to 350 ºC were followed by an increase in saturation magnetization and film s surface coercivity on the parallel direction in relative proportion. This fact can be attributed to the grain sizes and to the different phases formed, since iron rich fases, like the ɛFe3N phase, emerges more frequently on more elevated treatment s temperature. Using this new and reasonably low cost method, it was possible to deposit films with both good adhesion and good magnetic properties, with wide application in magnetic devices
Resumo:
In this work a study was done using electrochemical cyclic voltammetry and differential pulse voltammetry for isoniazida (INH), ethambutol (EMB), rifampicina (RIF) and pyrazinamide (PZA) using the electrode boron-doped diamond (BDD) as working electrode. It also verified the applicability of the technique of differential pulse voltammetry in the quantification of the active compounds used in the treatment of tuberculosis, subsequently applying in samples of pharmaceutical formulation. Among the four active compounds studied, isoniazid showed the best results for the detection and quantification using differential pulse voltammetry. At pH 4 and pH 8, for the calibration curves to INH showed good linearity, with quantification limits of 6.15 mmol L-1 (0,844 ppm) and 4.08 mmol L-1 (0.560 ppm) for the respective pH. The proposed method can be used to determine drug isoniazid, for recovery values were obtained in approximately 100%
Resumo:
The development of more selective and sensitive analytical methods is of great importance in different areas of knowledge, covering, for example, food, biotechnological, environmental and pharmaceutical sectors. The study aimed to employ the technique electroanalytical differential pulse voltammetry (DPV) as an innovative and promising alternative for identification and quantification of organic compounds. The organic compounds were investigated in this study oxalic acid (OA) and folic acid (FA). The electrochemical oxidation of oxalic acid has been extensively studied as a model reaction in the boundary between the organic and inorganic electrochemistry. Since the AF, an essential vitamin for cell multiplication in all tissues, which is essential for DNA synthesis. The AF has been investigated using analytical techniques, liquid chromatography and molecular absorption spectrophotometry. The results obtained during the experimental procedure indicated that the process of electrochemical oxidation of oxalic acid is strongly dependent on the nature of the anode material and the oxidation mechanism, which affects their detection. Efficient removal was observed in Ti/PbO2 anodes, graphite, BDD and Pt 90, 85, 80 and 78% respectively. It was also shown that the DPV employing glassy carbon electrode offers a fast, simple, reliable and economical way to determine the AO during the process of electrochemical oxidation. Furthermore, electroanalytical methods are more expensive than commonly used chromatographic analysis and other instrumental methods involving toxic reagents and higher cost. Compared with the classical method of titration and DPV could be a good fit, confidence intervals and detection limits confirming the applicability of electroanalytical technique for monitoring the degradation of oxalic acid. For the study of AF was investigated the electrocatalytic activity of the carbon paste electrode for identification and quantification in pharmaceutical formulations by applying the DPV. The results obtained during the experimental procedure showed an irreversible oxidation peak at 9.1 V characteristic of FA. The carbon paste sensor showed low detection limit of 5.683×10−8 mol L-1 reducing matrix effects. The spectrophotometric analysis showed lower concentrations of HF compared with those obtained by HPLC and DPV. The levels of AF were obtained according to the methodology proposed by the Brazilian Pharmacopoeia. The electroanalytical method (DPV) proposed is cheaper than GC analysis commonly used by the pharmaceutical industry. The results demonstrated the potential of these electroanalytical techniques for future applications in environmental, chemical and biological sensors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coffee seeds have limitations regarding to its conservation because of their sensitivity to desiccation and storage behavior. The establishment of a methodology for seed storage is difficult due to its deterioration. Deterioration can enhance the production of reactive oxygen species and cause lethal oxidative damage to plant tissues. The damage caused by harmful levels of free radicals can be softened by the action of endogenous or exogenous antioxidants. Recent research shows new antioxidative protection technologies, being cathodic protection a promising technique with relevant results in other recalcitrant species and even in other living organisms. Thus, the aim of this work was to verify the antioxidant effect of cathodic water in Coffea arabica L. seeds with the purpose of investigating a new technology to improve seed quality. The study was conducted at the Central Seed Laboratory, Department of Agriculture, at the Federal University of Lavras. Coffea arabica L. seeds were used. The study was conducted in two stages, in the first a preliminary analysis of the use of cathodic water was carried out in batches with different levels of quality. In the second it was evaluated the effect of light and of the imbibition period of the seeds in cathodic water. The seeds were immersed in distilled water and in cathodic water for eight distinct soaking periods, in absence and presence of light and then evaluated by physiological tests. It can be concluded that cathodic water can positively influence the physiological performance of the coffee seeds with poor quality, especially when embedded during periods between 4.5 to 7.5 hours in the absence of light.
Resumo:
A low-cost electrochemical method was developed for the determination of trace-level of methyl parathion (MP) based on the properties of graphite-modified basal plane pyrolytic graphite electrode (graphite-bppg). A combination of graphite-bppg with square-wave voltammetric (SWV) analysis resulted in an original, sensitive and selective electrochemical method for determination of MP pesticide in drinking water. The electrode was constructed and the electrochemical behavior of MP was studied. Immobilization is achieved via film modification from dispersing graphite powder in deionized water and through pipeting a small volume onto the electrode surface allowing the solvent to volatilize. The strong affinity of the graphite modifier for the phosphorous group of the MP allowed the deposition of a significant amount of MP in less than 60 seconds. The cyclic voltammetric results indicate that the graphite-bppg electrode can enhance sensitivity in current intensity towards the quasi-reversible redox peaks of the products of the cathodic reduction of the nitro group at negative potential (peak I = 0.077 V and peak II = –0.062 V) and that the cathodic irreversible peak (peak III = –0.586 V) in comparison with bare bppg electrode and is also adsorption controlled process. Under optimized conditions, the concentration range and detection limit for MP pesticide are respectively 79.0 to 263.3 mmol L-1 and 3.00 mmol L-1. The proposed method was successfully applied to MP determination in drinking water and the performance of this electrochemical sensor has been evaluated in terms of analytical figures of merit.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaça) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L - 1 for lead and copper. The limits of detection were 48.5 and 23.9 µg L - 1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: Avaliar o efeito da corrente catódica de alta voltagem sobre a dor em um modelo experimental de ciatalgia. MÉTODOS: Foram utilizados 16 ratos Wistar, machos, submetidos a um modelo de ciatalgia experimental no membro pélvico direito. Os sujeitos foram divididos em grupo simulacro (GS) e grupo tratado com corrente catódica (GP-) por 20 min diários durante 10 dias. O modelo de compressão foi realizado com amarria por fio catgut 4.0 cromado, em quatro pontos ao longo do nervo isquiático. A avaliação da nocicepção foi realizada, de forma funcional, com o tempo de elevação da pata (TEP), e à pressão, pelo limiar de retirada, via analgesímetro eletrônico. Os dados foram coletados antes do modelo de ciatalgia (AV1), três dias depois da compressão (antes, AV2, e após o tratamento, AV3), após o quinto dia de tratamento (AV4) e em seguida ao décimo dia de tratamento (AV5). RESULTADOS: Pela avaliação funcional, em ambos os grupos houve aumento da nocicepção, sem redução da mesma em qualquer momento da avaliação. À pressão, no entanto, o GS mostrou redução do limiar de retirada em todos os momentos, enquanto o GP- apresentou redução do limiar apenas inicialmente - em AV5 o limiar foi restaurado. CONCLUSÃO: Não houve alteração na nocicepção pela avaliação funcional; porém, à pressão, o tratamento com corrente catódica mostrou efeito com a somatória de terapias.