790 resultados para volatility forecasting


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The price formation of financial assets is a complex process. It extends beyond the standard economic paradigm of supply and demand to the understanding of the dynamic behavior of price variability, the price impact of information, and the implications of trading behavior of market participants on prices. In this thesis, I study aggregate market and individual assets volatility, liquidity dimensions, and causes of mispricing for US equities over a recent sample period. How volatility forecasts are modeled, what determines intradaily jumps and causes changes in intradaily volatility and what drives the premium of traded equity indexes? Are they induced, for example, by the information content of lagged volatility and return parameters or by macroeconomic news, changes in liquidity and volatility? Besides satisfying our intellectual curiosity, answers to these questions are of direct importance to investors developing trading strategies, policy makers evaluating macroeconomic policies and to arbitrageurs exploiting mispricing in exchange-traded funds. Results show that the leverage effect and lagged absolute returns improve forecasts of continuous components of daily realized volatility as well as jumps. Implied volatility does not subsume the information content of lagged returns in forecasting realized volatility and its components. The reported results are linked to the heterogeneous market hypothesis and demonstrate the validity of extending the hypothesis to returns. Depth shocks, signed order flow, the number of trades, and resiliency are the most important determinants of intradaily volatility. In contrast, spread shock and resiliency are predictive of signed intradaily jumps. There are fewer macroeconomic news announcement surprises that cause extreme price movements or jumps than those that elevate intradaily volatility. Finally, the premium of exchange-traded funds is significantly associated with momentum in net asset value and a number of liquidity parameters including the spread, traded volume, and illiquidity. The mispricing of industry exchange traded funds suggest that limits to arbitrage are driven by potential illiquidity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent literature has focused on realized volatility models to predict financial risk. This paper studies the benefit of explicitly modeling jumps in this class of models for value at risk (VaR) prediction. Several popular realized volatility models are compared in terms of their VaR forecasting performances through a Monte Carlo study and an analysis based on empirical data of eight Chinese stocks. The results suggest that careful modeling of jumps in realized volatility models can largely improve VaR prediction, especially for emerging markets where jumps play a stronger role than those in developed markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates how best to forecast optimal portfolio weights in the context of a volatility timing strategy. It measures the economic value of a number of methods for forming optimal portfolios on the basis of realized volatility. These include the traditional econometric approach of forming portfolios from forecasts of the covariance matrix, and a novel method, where a time series of optimal portfolio weights are constructed from observed realized volatility and directly forecast. The approach proposed here of directly forecasting portfolio weights shows a great deal of merit. Resulting portfolios are of equivalent economic benefit to a number of competing approaches and are more stable across time. These findings have obvious implications for the manner in which volatility timing is undertaken in a portfolio allocation context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper employs a VAR-GARCH model to investigate the return links and volatility transmission between the S&P 500 and commodity price indices for energy, food, gold and beverages over the turbulent period from 2000 to 2011. Understanding the price behavior of commodity prices and the volatility transmission mechanism between these markets and the stock exchanges are crucial for each participant, including governments, traders, portfolio managers, consumers, and producers. For return and volatility spillover, the results show significant transmission among the S&P 500 and commodity markets. The past shocks and volatility of the S&P 500 strongly influenced the oil and gold markets. This study finds that the highest conditional correlations are between the S&P 500 and gold index and the S&P 500 and WTI index. We also analyze the optimal weights and hedge ratios for commodities/S&P 500 portfolio holdings using the estimates for each index. Overall, our findings illustrate several important implications for portfolio hedgers for making optimal portfolio allocations, engaging in risk management and forecasting future volatility in equity and commodity markets. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low predictive power of implied volatility in forecasting the subsequently realized volatility is a well-documented empirical puzzle. As suggested by e.g. Feinstein (1989), Jackwerth and Rubinstein (1996), and Bates (1997), we test whether unrealized expectations of jumps in volatility could explain this phenomenon. Our findings show that expectations of infrequently occurring jumps in volatility are indeed priced in implied volatility. This has two important consequences. First, implied volatility is actually expected to exceed realized volatility over long periods of time only to be greatly less than realized volatility during infrequently occurring periods of very high volatility. Second, the slope coefficient in the classic forecasting regression of realized volatility on implied volatility is very sensitive to the discrepancy between ex ante expected and ex post realized jump frequencies. If the in-sample frequency of positive volatility jumps is lower than ex ante assessed by the market, the classic regression test tends to reject the hypothesis of informational efficiency even if markets are informationally effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit recent nonparametric asymptotic distributional results, are both easy-to-implement and highly accurate in empirically realistic situations. We also illustrate that properly accounting for the measurement errors in the volatility forecast evaluations reported in the existing literature can result in markedly higher estimates for the true degree of return volatility predictability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an artificial neural network approach for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. The accuracy of the wind power forecasting attained with the proposed approach is evaluated against persistence and ARIMA approaches, reporting the numerical results from a real-world case study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. In this paper, an adaptive neuro-fuzzy inference approach is proposed for short-term wind power forecasting. Results from a real-world case study are presented. A thorough comparison is carried out, taking into account the results obtained with other approaches. Numerical results are presented and conclusions are duly drawn. (C) 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work project is to find a model that is able to accurately forecast the daily Value-at-Risk for PSI-20 Index, independently of the market conditions, in order to expand empirical literature for the Portuguese stock market. Hence, two subsamples, representing more and less volatile periods, were modeled through unconditional and conditional volatility models (because it is what drives returns). All models were evaluated through Kupiec’s and Christoffersen’s tests, by comparing forecasts with actual results. Using an out-of-sample of 204 observations, it was found that a GARCH(1,1) is an accurate model for our purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For predicting future volatility, empirical studies find mixed results regarding two issues: (1) whether model free implied volatility has more information content than Black-Scholes model-based implied volatility; (2) whether implied volatility outperforms historical volatilities. In this thesis, we address these two issues using the Canadian financial data. First, we examine the information content and forecasting power between VIXC - a model free implied volatility, and MVX - a model-based implied volatility. The GARCH in-sample test indicates that VIXC subsumes all information that is reflected in MVX. The out-of-sample examination indicates that VIXC is superior to MVX for predicting the next 1-, 5-, 10-, and 22-trading days' realized volatility. Second, we investigate the predictive power between VIXC and alternative volatility forecasts derived from historical index prices. We find that for time horizons lesser than 10-trading days, VIXC provides more accurate forecasts. However, for longer time horizons, the historical volatilities, particularly the random walk, provide better forecasts. We conclude that VIXC cannot incorporate all information contained in historical index prices for predicting future volatility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we introduce a new approach for volatility modeling in discrete and continuous time. We follow the stochastic volatility literature by assuming that the variance is a function of a state variable. However, instead of assuming that the loading function is ad hoc (e.g., exponential or affine), we assume that it is a linear combination of the eigenfunctions of the conditional expectation (resp. infinitesimal generator) operator associated to the state variable in discrete (resp. continuous) time. Special examples are the popular log-normal and square-root models where the eigenfunctions are the Hermite and Laguerre polynomials respectively. The eigenfunction approach has at least six advantages: i) it is general since any square integrable function may be written as a linear combination of the eigenfunctions; ii) the orthogonality of the eigenfunctions leads to the traditional interpretations of the linear principal components analysis; iii) the implied dynamics of the variance and squared return processes are ARMA and, hence, simple for forecasting and inference purposes; (iv) more importantly, this generates fat tails for the variance and returns processes; v) in contrast to popular models, the variance of the variance is a flexible function of the variance; vi) these models are closed under temporal aggregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This note develops general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit the recent asymptotic distributional results in Barndorff-Nielsen and Shephard (2002a), are both easy to implement and highly accurate in empirically realistic situations. On properly accounting for the measurement errors in the volatility forecast evaluations reported in Andersen, Bollerslev, Diebold and Labys (2003), the adjustments result in markedly higher estimates for the true degree of return-volatility predictability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantile forecasts are central to risk management decisions because of the widespread use of Value-at-Risk. A quantile forecast is the product of two factors: the model used to forecast volatility, and the method of computing quantiles from the volatility forecasts. In this paper we calculate and evaluate quantile forecasts of the daily exchange rate returns of five currencies. The forecasting models that have been used in recent analyses of the predictability of daily realized volatility permit a comparison of the predictive power of different measures of intraday variation and intraday returns in forecasting exchange rate variability. The methods of computing quantile forecasts include making distributional assumptions for future daily returns as well as using the empirical distribution of predicted standardized returns with both rolling and recursive samples. Our main findings are that the Heterogenous Autoregressive model provides more accurate volatility and quantile forecasts for currencies which experience shifts in volatility, such as the Canadian dollar, and that the use of the empirical distribution to calculate quantiles can improve forecasts when there are shifts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores a number of statistical models for predicting the daily stock return volatility of an aggregate of all stocks traded on the NYSE. An application of linear and non-linear Granger causality tests highlights evidence of bidirectional causality, although the relationship is stronger from volatility to volume than the other way around. The out-of-sample forecasting performance of various linear, GARCH, EGARCH, GJR and neural network models of volatility are evaluated and compared. The models are also augmented by the addition of a measure of lagged volume to form more general ex-ante forecasting models. The results indicate that augmenting models of volatility with measures of lagged volume leads only to very modest improvements, if any, in forecasting performance.