961 resultados para visual feedback


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Animal models of refractive error development have demonstrated that visual experience influences ocular growth. In a variety of species, axial anisometropia (i.e. a difference in the length of the two eyes) can be induced through unilateral occlusion, image degradation or optical manipulation. In humans, anisometropia may occur in isolation or in association with amblyopia, strabismus or unilateral pathology. Non-amblyopic myopic anisometropia represents an interesting anomaly of ocular growth, since the two eyes within one visual system have grown to different endpoints. These experiments have investigated a range of biometric, optical and mechanical properties of anisometropic eyes (with and without amblyopia) with the aim of improving our current understanding of asymmetric refractive error development. In the first experiment, the interocular symmetry in 34 non-amblyopic myopic anisometropes (31 Asian, 3 Caucasian) was examined during relaxed accommodation. A high degree of symmetry was observed between the fellow eyes for a range of optical, biometric and biomechanical measurements. When the magnitude of anisometropia exceeded 1.75 D, the more myopic eye was almost always the sighting dominant eye. Further analysis of the optical and biometric properties of the dominant and non-dominant eyes was conducted to determine any related factors but no significant interocular differences were observed with respect to best-corrected visual acuity, corneal or total ocular aberrations during relaxed accommodation. Given the high degree of symmetry observed between the fellow eyes during distance viewing in the first experiment and the strong association previously reported between near work and myopia development, the aim of the second experiment was to investigate the symmetry between the fellow eyes of the same 34 myopic anisometropes following a period of near work. Symmetrical changes in corneal and total ocular aberrations were observed following a short reading task (10 minutes, 2.5 D accommodation demand) which was attributed to the high degree of interocular symmetry for measures of anterior eye morphology, and corneal biomechanics. These changes were related to eyelid shape and position during downward gaze, but gave no clear indication of factors associated with near work that might cause asymmetric eye growth within an individual. Since the influence of near work on eye growth is likely to be most obvious during, rather than following near tasks, in the third experiment the interocular symmetry of the optical and biometric changes was examined during accommodation for 11 myopic anisometropes. The changes in anterior eye biometrics associated with accommodation were again similar between the eyes, resulting in symmetrical changes in the optical characteristics. However, the more myopic eyes exhibited slightly greater amounts of axial elongation during accommodation which may be related to the force exerted by the ciliary muscle. This small asymmetry in axial elongation we observed between the eyes may be due to interocular differences in posterior eye structure, given that the accommodative response was equal between eyes. Using ocular coherence tomography a reduced average choroidal thickness was observed in the more myopic eyes compared to the less myopic eyes of these subjects. The interocular difference in choroidal thickness was correlated with the magnitude of spherical equivalent and axial anisometropia. The symmetry in optics and biometrics between fellow eyes which have undergone significantly different visual development (i.e. anisometropic subjects with amblyopia) is also of interest with respect to refractive error development. In the final experiment the influence of altered visual experience upon corneal and ocular higher-order aberrations was investigated in 21 amblyopic subjects (8 refractive, 11 strabismic and 2 form deprivation). Significant differences in aberrations were observed between the fellow eyes, which varied according to the type of amblyopia. Refractive amblyopes displayed significantly higher levels of 4th order corneal aberrations (spherical aberration and secondary astigmatism) in the amblyopic eye compared to the fellow non-amblyopic eye. Strabismic amblyopes exhibited significantly higher levels of trefoil, a third order aberration, in the amblyopic eye for both corneal and total ocular aberrations. The results of this experiment suggest that asymmetric visual experience during development is associated with asymmetries in higher-order aberrations, proportional to the magnitude of anisometropia and dependent upon the amblyogenic factor. This suggests a direct link between the development of higher-order optical characteristics of the human eye and visual feedback. The results from these experiments have shown that a high degree of symmetry exists between the fellow eyes of non-amblyopic myopic anisometropes for a range of biomechanical, biometric and optical parameters for different levels of accommodation and following near work. While a single specific optical or biomechanical factor that is consistently associated with asymmetric refractive error development has not been identified, the findings from these studies suggest that further research into the association between ocular dominance, choroidal thickness and higher-order aberrations with anisometropia may improve our understanding of refractive error development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a system incorporating a tight integration between computer vision and robot control modules on a complex, high-DOF humanoid robot. Its functionality is showcased by having our iCub humanoid robot pick-up objects from a table in front of it. An important feature is that the system can avoid obstacles - other objects detected in the visual stream - while reaching for the intended target object. Our integration also allows for non-static environments, i.e. the reaching is adapted on-the-fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. Furthermore we show that this system can be used both in autonomous and tele-operation scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modern unilateral surgical treatment of otosclerosis started in 1956. Simultaneous bilateral surgery has not been reported in stapes surgery and in case of bilateral otosclerosis ears are operated in two different sessions. Simultaneous surgery would give the patient the opportunity to gain advantages of bilateral hearing within one session, with less time spent in hospital and on sick leave. The mechanism for vestibular symptoms and the exact end organ affected after surgery is still unveiled. This thesis presents the results of experimental simultaneous bilateral stapes surgery, and vestibular symptoms and findings before and after unilateral stapes surgery. In addition, we explore reasons for outpatient failures in otosclerosis surgery. -- Study I examines the outcome of simultaneous bilateral surgery. Hearing was evaluated with standard pure tone and speech audiograms and vestibular apparatus with visual feedback posturography (VFP) during the one-year follow-up. Subjective symptoms and quality of life were assessed with questionnaires. In study II, reasons for outpatient failures in stapes surgery were explored. Forty-seven consecutive stapedotomies and stapedectomies performed by the same surgeon were included, and the effect of failures on hearing results were analysed. Vestibular symptoms and the end organ(s) affected after stapes surgery were investigated in studies III and IV. With video-oculography (VOG), nystagmus was measured preoperatively, and at one week, one month and 3 months postoperatively in the first phase (III). In the second phase (IV), recordings were obtained some hours postoperatively. The hearing results of the simultaneous bilateral surgery were comparable with unilateral surgeries reported. Recovery from the surgery was fast. Significant improvement in performance and quality of life was noted already month after operation in subjective evaluations. Based on these results, simultaneous bilateral surgery is a suitable approach in bilateral otosclerosis Significantly more outpatient failures occurred for medical reasons in the stapedectomy group (13%) than in the stapedotomy group (2%). Stapedotomy should be favoured if outpatient surgery is planned. However, unplanned admission did not worsen the prognosis. VOG measurements in study III did not show any specific type of nystagmus in patients having vestibular symptoms postoperatively. However, VOG measurements immediately after surgery (IV) revealed nystagmus consistent with a minor disturbance of the semicircular canals in 33% of the patients. Subjectively, half of the patients reported vestibular symptoms that were probably of diverse origin, and could have originated from both otolith and semicircular canal parts of the vestibular organ. Since vestibular symptoms and signs are mild, patients may be safely discharged some hours after stapes surgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Balance and stability are very important for everybody and especially for sports-person who undergo extreme physical activities. Balance and stability exercises not only have a great impact on the performance of the sportsperson but also play a pivotal role in their rehabilitation. Therefore, it is very essential to have knowledge about a sportsperson’s balance and also to quantify the same. In this work, we propose a system consisting of a wobble board, with a gyro enhanced orientation sensor and a motion display for visual feedback to help the sportsperson improve their stability. The display unit gives in real time the orientation of the wobble board, which can help the sportsperson to apply necessary corrective forces to maintain neutral position. The system is compact and portable. We also quantify balance and stability using power spectral density. The sportsperson is made stand on the wobble board and the angular orientation of the wobble board is recorded for each 0.1 second interval. The signal is analized using discrete Fourier transforms. The power of this signal is related to the stability of the subject. This procedure is used to measure the balance and stability of an elite cricket team. Representative results are shown below: Table 1 represents power comparison of two subjects and Table 2 represents power comparison of left leg and right leg of one subject. This procedure can also be used in clinical practice to monitor improvement in stability dysfunction of sportsperson with injuries or other related problems undergoing rehabilitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sensorimotor learning has been shown to depend on both prior expectations and sensory evidence in a way that is consistent with Bayesian integration. Thus, prior beliefs play a key role during the learning process, especially when only ambiguous sensory information is available. Here we develop a novel technique to estimate the covariance structure of the prior over visuomotor transformations--the mapping between actual and visual location of the hand--during a learning task. Subjects performed reaching movements under multiple visuomotor transformations in which they received visual feedback of their hand position only at the end of the movement. After experiencing a particular transformation for one reach, subjects have insufficient information to determine the exact transformation, and so their second reach reflects a combination of their prior over visuomotor transformations and the sensory evidence from the first reach. We developed a Bayesian observer model in order to infer the covariance structure of the subjects' prior, which was found to give high probability to parameter settings consistent with visuomotor rotations. Therefore, although the set of visuomotor transformations experienced had little structure, the subjects had a strong tendency to interpret ambiguous sensory evidence as arising from rotation-like transformations. We then exposed the same subjects to a highly-structured set of visuomotor transformations, designed to be very different from the set of visuomotor rotations. During this exposure the prior was found to have changed significantly to have a covariance structure that no longer favored rotation-like transformations. In summary, we have developed a technique which can estimate the full covariance structure of a prior in a sensorimotor task and have shown that the prior over visuomotor transformations favor a rotation-like structure. Moreover, through experience of a novel task structure, participants can appropriately alter the covariance structure of their prior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several studies have shown that sensory contextual cues can reduce the interference observed during learning of opposing force fields. However, because each study examined a small set of cues, often in a unique paradigm, the relative efficacy of different sensory contextual cues is unclear. In the present study we quantify how seven contextual cues, some investigated previously and some novel, affect the formation and recall of motor memories. Subjects made movements in a velocity-dependent curl field, with direction varying randomly from trial to trial but always associated with a unique contextual cue. Linking field direction to the cursor or background color, or to peripheral visual motion cues, did not reduce interference. In contrast, the orientation of a visual object attached to the hand cursor significantly reduced interference, albeit by a small amount. When the fields were associated with movement in different locations in the workspace, a substantial reduction in interference was observed. We tested whether this reduction in interference was due to the different locations of the visual feedback (targets and cursor) or the movements (proprioceptive). When the fields were associated only with changes in visual display location (movements always made centrally) or only with changes in the movement location (visual feedback always displayed centrally), a substantial reduction in interference was observed. These results show that although some visual cues can lead to the formation and recall of distinct representations in motor memory, changes in spatial visual and proprioceptive states of the movement are far more effective than changes in simple visual contextual cues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

目前,利用单根碳纳米管进行纳电子器件的研制成为纳电子学界研究的前沿与热点,但在纳电子器件研制过程中,如何实现单根碳纳米管与微电极的精确装配与电连接成为关键技术难题之一。为探索实现此关键技术的新方法,本文尝试将介电电泳与具有实时力/视觉反馈的原子力显微镜操作方法相结合,从而结合粗、精两级操作方式,来实现单根碳纳米管的精确装配与电连接。单根多壁碳纳米管的精确装配与电特性测试实验验证了该方法的有效性,从而为装配研制基于单根纳米管/线的纳电子器件提供了一种新颖可行的方法。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

提出了交互式纳米操作的实现方法,搭建了一个具有力觉与视觉反馈的交互式纳米操作系统.操作者通过该系统不仅可以实时感受到作用在原子力显微镜(AFM)探针上的力,而且可以实时观察到纳米环境在AFM操作下的变化过程,使得对微观世界的纳米操作如同在宏观世界搬运物体一样直观、灵活.实验结果证实了本系统的高效性及先进性.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

当利用扫描隧道显微镜(SPM)作为一种纳米操作工具时,由于其缺乏实时的传感器信息反馈,而大大阻碍了它的广泛应用.利用超媒体人机交互接口可以解决这个问题.在纳米操作过程中,超媒体接口不但可以为操作者提供可实时更新的仿真操作场景,还可以通过力反馈手柄让操作者实时地感受到探针受到的三维纳米操作力.除此之外,操作者还可以通过该手柄直接控制探针的三维运动.最后在聚碳酸酯上进行了超媒体人机接口的纳米刻画实验.实验结果验证了该系统的有效性和效率.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

讨论了Windows环境下利用软件编解码器实现视频压缩的方法和技巧,结合视频捕获和视频传输,以网络环境下机器人遥操作的实际应用为背景,给出了数字视频实时通信的编程实例。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the cognitive studies of action, an important behavioral method is used to observe Reaction Time (RT) and Movement Time (MT) as the functions of motor parameters. RT is measured from the beginning of target presentation to the initiation of a movement, which is regarded as the programming of the ongoing movement. MT is measured from the initiation to the end of the movement, which is regarded as the execution of the movement. However, the relationship between RT and motor parameters remains uncertain till now. Under the uncertainty many related issues cannot be settled for long period, especially the issues as whether the amplitude effect appears during RT, or what should the amplitude effect be during RT. The present study aimed to find out the amplitude effect and the related cognitive process under different experimental conditions. First, we discussed the potential composition of RT and suggested that RT that normally measured in previous experiments might not reflect motor programming very well. Then we designed a series experiments to observe the relationship between RT and motor programming by using different Index of Difficulty (ID), different instructions in which speed and accuracy were emphasized respectively, different vision condition during movement execution and Go/NoGo paradigm. Meanwhile, we compared the amplitude effect under the respective RT to make the specific conclusion about the amplitude effect, and the relationship between RT and MT as well. The main findings are showed as following. 1) Because of the existing of “preview”, “visual feedback control” and “speed-accuracy tradeoff”, RT reflects motor programming differently under different experimental conditions. 2) Under different experimental conditions, the amplitude effect on RT varies. RT could be too short to exhibit the amplitude effect. Or the amplitude effect could be that more RT is needed for shorter movement when RT is prolonged. Or the amplitude effect could be that more RT is needed for longer movement when RT is further prolonged. 3) Under the present experimental conditions, the amplitude effect on MT showed consistently that longer movement needs longer MT. 4) Under the present experimental conditions, the relationship between RT and MT is a kind of compensation. The present study has important theoretic significance. The cognitive process of action is an important part of human cognitive behavior. The related studies could be very helpful for human people to know about themselves and the relation between themselves and the surroundings as well. Keywords motor programming; amplitude effect; Reaction Time (RT); Movement Time (MT)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a self-organizing neural model for eye-hand coordination. Called the DIRECT model, it embodies a solution of the classical motor equivalence problem. Motor equivalence computations allow humans and other animals to flexibly employ an arm with more degrees of freedom than the space in which it moves to carry out spatially defined tasks under conditions that may require novel joint configurations. During a motor babbling phase, the model endogenously generates movement commands that activate the correlated visual, spatial, and motor information that are used to learn its internal coordinate transformations. After learning occurs, the model is capable of controlling reaching movements of the arm to prescribed spatial targets using many different combinations of joints. When allowed visual feedback, the model can automatically perform, without additional learning, reaches with tools of variable lengths, with clamped joints, with distortions of visual input by a prism, and with unexpected perturbations. These compensatory computations occur within a single accurate reaching movement. No corrective movements are needed. Blind reaches using internal feedback have also been simulated. The model achieves its competence by transforming visual information about target position and end effector position in 3-D space into a body-centered spatial representation of the direction in 3-D space that the end effector must move to contact the target. The spatial direction vector is adaptively transformed into a motor direction vector, which represents the joint rotations that move the end effector in the desired spatial direction from the present arm configuration. Properties of the model are compared with psychophysical data on human reaching movements, neurophysiological data on the tuning curves of neurons in the monkey motor cortex, and alternative models of movement control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experiment was performed to characterise the movement kinematics and the electromyogram (EMG) during rhythmic voluntary flexion and extension of the wrist against different compliant (elastic-viscous-inertial) loads. Three levels of each type of load, and an unloaded condition, were employed. The movements were paced at a frequency of I Hz by an auditory metronome, and visual feedback of wrist displacement in relation to a target amplitude of 100degrees was provided. Electro-myographic recordings were obtained from flexor carpi radialis (FCR) and extensor carpi radialis brevis (ECR). The movement profiles generated in the ten experimental conditions were indistinguishable, indicating that the CNS was able to compensate completely for the imposed changes in the task dynamics. When the level of viscous load was elevated, this compensation took the form of an increase in the rate of initial rise of the flexor and the extensor EMG burst. In response to increases in inertial load, the flexor and extensor EMG bursts commenced and terminated earlier in the movement cycle, and tended to be of greater duration. When the movements were performed in opposition to an elastic load, both the onset and offset of EMG activity occurred later than in the unloaded condition. There was also a net reduction in extensor burst duration with increases in elastic load, and an increase in the rate of initial rise of the extensor burst. Less pronounced alterations in the rate of initial rise of the flexor EMG burst were also observed. In all instances, increases in the magnitude of the external load led to elevations in the overall level of muscle activation. These data reveal that the elements of the central command that are modified in response to the imposition of a compliant load are contingent, not only upon the magnitude, but also upon the character of the load.