930 resultados para vision-impaired
Resumo:
Current policies on education to visually impaired point for a growing trend of including students with special educational needs in regular schools. However, most often this inclusion is not accompanied by an appropriate professional trained or infrastructure, which has been presented as a big problem for regular school teachers who have students with visual impairments in their classroom. Based on this situation, the Group of Extension in Tactile Cartography from UNESP - University of the State of São Paulo - Campus de Rio Claro - SP - Brazil has been developing educational material of geography and cartography to blind students at a special school. Among the materials developed in this study highlight the development of graphics and board games provided with sound capabilities through MAPAVOX, software developed in partnership with UFRJ - Federal University from Rio de Janeiro - RJ - Brazil. Through this software, sound capabilities can be inserted into built materials, giving them a multi-sensory character. In most cases the necessary conditions for building specific materials to students with visual impairments is expensive and beyond the reach of features from a regular school, so the survey sought to use easy access and low cost materials like Cork, leaf aluminum, material for fixing and others. The development of these materials was supported by preparation in laboratory and its subsequent test through practices involving blind students. The methodology used on the survey is based on qualitative research and non comparative analysis of the results. In other words, the material is built based on the special students perception and reality construction, not being mere adaptations of visual materials, but a construction focused on the reality of the visually impaired. The results proved were quite successful as the materials prepared were effective on mediating the learning process of students with disabilities. Geographical and cartographic concepts were seized by the students through the technology used, associated with the use of materials that took into account in its building process the perception of the students.
Resumo:
The tactile cartography is an area of Cartography that aims the development of methodologies and didactical material to work cartographic concepts with blind and low vision people. The main aim of this article is to present the experience of Tactile Cartography Research Group from Sao Paulo State University (UNESP), including some didactical material and courses for teachers using the System MAPAVOX. The System MAPAVOX is software developed by our research group in a partnership with Federal University of Rio de Janeiro (UFRJ) that integrates maps and models with a voice synthesizer, sound emission, texts, images and video visualizing for computers. Our research methodology is based in authors that have in the students the centre of didactical activity such as Ochaita and Espinosa in [1], which developed studies related to blind children's literacy. According to Almeida the child's drawing is, thus, a system of representation. It isn't a copy of objects, but interpretation of that which is real, done by the child in graphic language[2]. In the proposed activities with blind and low vision students they are prepared to interpret reality and represent it by adopting concepts of graphic language learned. To start the cartographic initialization it is necessary to use personal and quotidian references, for example the classroom tactile model or map, to include concepts in generalization and scale concerning to their space of life. During these years many case studies were developed with blind and low vision students from Special School for Hearing Impaired and Visually Impaired in Araras and Rio Claro, Sao Paulo - Brazil. The most part of these experiences and others from Brazil and Chile are presented in [3]. Tactile material and MAPAVOX facilities are analysed by students and teachers who contribute with suggestions to reformulate and adapt them to their sensibility and necessity. Since 2005 we offer courses in Tactile Cartography to prepare teachers from elementary school in the manipulation of didactical material and attending students with special educational needs in regular classroom. There were 6 classroom and blended courses offered for 184 teachers from public schools in this region of the Sao Paulo state. As conclusion we can observe that methodological procedures centred in the blind and low vision students are successful in their spatial orientation if use didactical material from places or objects with which they have significant experience. During the applying of courses for teachers we could see that interdisciplinary groups can find creative cartographic alternatives more easily. We observed too that the best results in methodological procedures were those who provided concreteness to abstract concepts using daily experiences.
Resumo:
This longitudinal study addresses the reversibility of color vision losses in subjects who had been occupationally exposed to mercury vapor. Color discrimination was assessed in 20 Hg-exposed patients (mean age = 42.4 +/- 6.5 years; 6 females and 14 males) with exposure to Hg vapor during 10.5 +/- 5.3 years and away from the work place (relative to 2002) for 6.8 +/- 4.2 years. During the Hg exposure or up to one year after ceasing it, mean urinary Hg concentration was 47 +/- 35.4 mu g/g creatinine. There was no information on Hg urinary concentration at the time of the first tests, in 2002 (Ventura et al., 2005), but at the time of the follow-up tests, in 2005, this value was 1.4 +/- 1.4 mu g/g creatinine for patients compared with 0.5 +/- 0.5 mu g/g creatinine for controls (different group from the one in Ventura et al. (2005)). Color vision was monocularly assessed using the Cambridge Colour Test (CCT). Hg-exposed patients had significantly worse color discrimination (p < 0.02) than controls, as evaluated by the size of MacAdam`s color discrimination ellipses and color discrimination thresholds along protan, deutan, and tritan confusion axes. There were no significant differences between the results of the study in Ventura et al. (2005) and in the present follow-up measurements, in 2005, except for worsening of the tritan thresholds in the best eye in 2005. Both chromatic systems, blue-yellow and red-green, were affected in the first evaluation (Ventura et al., 2005) and remained impaired in the follow-up testing, in 2005. These findings indicate that following a long-term occupational exposure to Hg vapor, even several years away from the source of intoxication, color vision impairment remains irreversible.
Resumo:
Ren and colleagues (2006) found that saccades to visual targets became less accurate when somatosensory information about hand location was added, suggesting that saccades rely mainly on vision. We conducted two kinematic experiments to examine whether or not reaching movements would also show such strong reliance on vision. In Experiment 1, subjects used their dominant right hand to perform reaches, with or without a delay, to an external visual target or to their own left fingertip positioned either by the experimenter or by the participant. Unlike saccades, reaches became more accurate and precise when proprioceptive information was available. In Experiment 2, subjects reached toward external or bodily targets with differing amounts of visual information. Proprioception improved performance only when vision was limited. Our results indicate that reaching movements, unlike saccades, are improved rather than impaired by the addition of somatosensory information.
Resumo:
Background: visual and cognitive impairments are common in later life. Yet there are very few cognitive screening tests for the visually impaired. Objective: to screen for cognitive impairment in the visually impaired. Methods: case-control study including 150 elderly participants with visual impairment (n = 74) and a control group without visual impairment (n = 76) using vision-independent cognitive tests and cognitive screening tests (MMSE and clock drawing tests (CDT)) which are in part vision dependent. Results: the scoring of the two groups did not differ in the vision-independent cognitive tests. Visually impaired patients performed poorer than controls in the vision-dependent items of the MMSE (T = 7.3; df: 148; P < 0.001) and in CDT (T = 3.1; df: 145; P = 0.003). No group difference was found when vision-independent items were added to MMSE and CDT. The test score gain by the use of vision-independent items correlated with the severity of visual impairment (P < 0.002). Conclusion: visually impaired patients benefit from cognitive tests, which do not rely on vision. The more visually impaired the greater the benefit.
Resumo:
When we actively explore the visual environment, our gaze preferentially selects regions characterized by high contrast and high density of edges, suggesting that the guidance of eye movements during visual exploration is driven to a significant degree by perceptual characteristics of a scene. Converging findings suggest that the selection of the visual target for the upcoming saccade critically depends on a covert shift of spatial attention. However, it is unclear whether attention selects the location of the next fixation uniquely on the basis of global scene structure or additionally on local perceptual information. To investigate the role of spatial attention in scene processing, we examined eye fixation patterns of patients with spatial neglect during unconstrained exploration of natural images and compared these to healthy and brain-injured control participants. We computed luminance, colour, contrast, and edge information contained in image patches surrounding each fixation and evaluated whether they differed from randomly selected image patches. At the global level, neglect patients showed the characteristic ipsilesional shift of the distribution of their fixations. At the local level, patients with neglect and control participants fixated image regions in ipsilesional space that were closely similar with respect to their local feature content. In contrast, when directing their gaze to contralesional (impaired) space neglect patients fixated regions of significantly higher local luminance and lower edge content than controls. These results suggest that intact spatial attention is necessary for the active sampling of local feature content during scene perception.
Resumo:
OBJECTIVE: In this article, we review the impact of vision on older people's night driving abilities. Driving is the preferred and primary mode of transport for older people. It is a complex activity where intact vision is seminal for road safety. Night driving requires mesopic rather than scotopic vision, because there is always some light available when driving at night. Scotopic refers to night vision, photopic refers to vision under well-lit conditions, and mesopic vision is a combination of photopic and scotopic vision in low but not quite dark lighting situations. With increasing age, mesopic vision decreases and glare sensitivity increases, even in the absence of ocular diseases. Because of the increasing number of elderly drivers, more drivers are affected by night vision difficulties. Vision tests, which accurately predict night driving ability, are therefore of great interest. METHODS: We reviewed existing literature on age-related influences on vision and vision tests that correlate or predict night driving ability. RESULTS: We identified several studies that investigated the relationship between vision tests and night driving. These studies found correlations between impaired mesopic vision or increased glare sensitivity and impaired night driving, but no correlation was found among other tests; for example, useful field of view or visual field. The correlation between photopic visual acuity, the most commonly used test when assessing elderly drivers, and night driving ability has not yet been fully clarified. CONCLUSIONS: Photopic visual acuity alone is not a good predictor of night driving ability. Mesopic visual acuity and glare sensitivity seem relevant for night driving. Due to the small number of studies evaluating predictors for night driving ability, further research is needed.
Resumo:
Visually impaired people have many difficulties when traveling because it is impossible for them to detect obstacles that stand in their way. Bats instead of using the sight to detect these obstacles use a method based on ultrasounds, as their sense of hearing is much more developed than that of sight. The aim of the project is to design and build a device based on the method used by the bats to detect obstacles and transmit this information to people with vision problems to improve their skills. The method involves sending ultrasonic waves and analyzing the echoes produced when these waves collide with an obstacle. The sent signals are pulses and the information needed is the time elapsed from we send a pulse to receive the echo produced. The speed of sound is fixed within the same environment, so measuring the time it takes the wave to make the return trip, we can easily know the distance where the object is located. To build the device we have to design the necessary circuits, fabricate printed circuit boards and mount the components. We also have to design a program that would work within the digital part, which will be responsible for performing distance calculations and generate the signals with the information for the user. The circuits are the emitter and the receiver. The transmitter circuit is responsible for generating the signals that we will use. We use an ultrasonic transmitter which operates at 40 kHz so the sent pulses have to be modulated with this frequency. For this we generate a 40 kHz wave with an astable multivibrator formed by NAND gates and a train of pulses with a timer. The signal is the product of these two signals. The circuit of the receiver is a signal conditioner which transforms the signals received by the ultrasonic receiver in square pulses. The received signals have a 40 kHz carrier, low voltage and very different shapes. In the signal conditioner we will amplify the voltage to appropriate levels, eliminate the component of 40 kHz and make the shape of the pulses square to use them digitally. To simplify the design and manufacturing process in the digital part of the device we will use the Arduino platform. The pulses sent and received echoes enter through input pins with suitable voltage levels. In the Arduino, our program will poll these two signals storing the time when a pulse occurs. These time values are analyzed and used to generate an audible signal with the user information. This information is stored in the frequency of the signal, so that the generated signal frequency varies depending on the distance at which the objects are. RESUMEN Las personas con discapacidad visual tienen muchas dificultades a la hora de desplazarse ya que les es imposible poder detectar los obstáculos que se interpongan en su camino. Los murciélagos en vez de usar la vista para detectar estos obstáculos utilizan un método basado en ultrasonidos, ya que su sentido del oído está mucho más desarrollado que el de la vista. El objetivo del proyecto es diseñar y construir un dispositivo basado en el método usado por los murciélagos para detectar obstáculos y que pueda ser usado por las personas con problemas en la vista para mejorar sus capacidades. El método utilizado consiste en enviar ondas de ultrasonidos y analizar el eco producido cuando estas ondas chocan con algún obstáculo. Las señales enviadas tendrán forma de pulsos y la información necesaria es el tiempo transcurrido entre que enviamos un pulso y recibimos el eco producido. La velocidad del sonido es fija dentro de un mismo entorno, por lo que midiendo el tiempo que tarda la onda en hacer el viaje de ida y vuelta podemos fácilmente conocer la distancia a la que se encuentra el objeto. Para construir el dispositivo tendremos que diseñar los circuitos necesarios, fabricar las placas de circuito impreso y montar los componentes. También deberemos diseñar el programa que funcionara dentro de la parte digital, que será el encargado de realizar los cálculos de la distancia y de generar las señales con la información para el usuario. Los circuitos diseñados corresponden uno al emisor y otro al receptor. El circuito emisor es el encargado de generar las señales que vamos a emitir. Vamos a usar un emisor de ultrasonidos que funciona a 40 kHz por lo que los pulsos que enviemos van a tener que estar modulados con esta frecuencia. Para ello generamos una onda de 40 kHz mediante un multivibrador aestable formado por puertas NAND y un tren de pulsos con un timer. La señal enviada es el producto de estas dos señales. El circuito de la parte del receptor es un acondicionador de señal que transforma las señales recibidas por el receptor de ultrasonidos en pulsos cuadrados. Las señales recibidas tienen una portadora de 40 kHz para poder usarlas con el receptor de ultrasonidos, bajo voltaje y formas muy diversas. En el acondicionador de señal amplificaremos el voltaje a niveles adecuados además de eliminar la componente de 40 kHz y conseguir pulsos cuadrados que podamos usar de forma digital. Para simplificar el proceso de diseño y fabricación en la parte digital del dispositivo usaremos la plataforma Arduino. Las señales correspondientes el envío de los pulsos y a la recepción de los ecos entraran por pines de entrada después de haber adaptado los niveles de voltaje. En el Arduino, nuestro programa sondeara estas dos señales almacenando el tiempo en el que se produce un pulso. Estos valores de tiempo se analizan y se usan para generar una señal audible con la información para el usuario. Esta información ira almacenada en la frecuencia de la señal, por lo que la señal generada variará su frecuencia en función de la distancia a la que se encuentren los objetos.
Resumo:
In the present study, NaSi-l sulphate transporter knock-out (Nas1-/-) mice, an animal model of hyposulphataernia, were examined for spatial memory and learning in a Morris water maze, and for olfactory function in a cookie test. The Nas1-/- mice displayed significantly (P < 0.05) increased latencies to find an escape platform in the reversal teaming trials at 2 days but not 1 day after the last acquisition trial in a Morris water maze test. suggesting that Nas1-/- mice may have proactive memory interference. While the wild-type (Ncis1+/+) mice showed a significant (P < 0.02) decrease in time to locate a hidden food reward over four trials after overnight fasting, Nas1-/- mice did not change their performance, resulting in significantly (P < 0.05) higher latencies when compared to their Nas1+/+ littermates. There were no significant differences between Nas1-/- and Nas1+/+ mice in the cookie test after moderate food deprivation. In addition, both Nas1-/- and Nas1+/+ mice displayed similar escape latencies in the acquisition phase of the Morris water maze test, suggesting that learning, motivation, vision and motor skills required for the task may not be affected in Nas1-/- mice. This is the first study to demonstrate an impairment in memory and olfactory performance in the hyposulphataemic Nas1-/- mouse. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Background/aims: Network 1000 is a UK-based panel survey of a representative sample of adults with registered visual impairment, with the aim of gathering information about people’s opinions and circumstances. Method: Participants were interviewed (Survey 1, n = 1007: 2005; Survey 2, n = 922: 2006/07) on a range of topics including the nature of their eye condition, details of other health issues, use of low vision aids (LVAs) and their experiences in eye clinics. Results: Eleven percent of individuals did not know the name of their eye condition. Seventy percent of participants reported having long-term health problems or disabilities in addition to visual impairment and 43% reported having hearing difficulties. Seventy one percent reported using LVAs for reading tasks. Participants who had become registered as visually impaired in the previous 8 years (n = 395) were asked questions about non-medical information received in the eye clinic around that time. Reported information received included advice about ‘registration’ (48%), low vision aids (45%) and social care routes (43%); 17% reported receiving no information. While 70% of people were satisfied with the information received, this was lower for those of working age (56%) compared with retirement age (72%). Those who recalled receiving additional non-medical information and advice at the time of registration also recalled their experiences more positively. Conclusions: Whilst caution should be applied to the accuracy of recall of past events, the data provide a valuable insight into the types of information and support that visually impaired people feel they would benefit from in the eye clinic.
Resumo:
The human visual system combines contrast information from the two eyes to produce a single cyclopean representation of the external world. This task requires both summation of congruent images and inhibition of incongruent images across the eyes. These processes were explored psychophysically using narrowband sinusoidal grating stimuli. Initial experiments focussed on binocular interactions within a single detecting mechanism, using contrast discrimination and contrast matching tasks. Consistent with previous findings, dichoptic presentation produced greater masking than monocular or binocular presentation. Four computational models were compared, two of which performed well on all data sets. Suppression between mechanisms was then investigated, using orthogonal and oblique stimuli. Two distinct suppressive pathways were identified, corresponding to monocular and dichoptic presentation. Both pathways impact prior to binocular summation of signals, and differ in their strengths, tuning, and response to adaptation, consistent with recent single-cell findings in cat. Strikingly, the magnitude of dichoptic masking was found to be spatiotemporally scale invariant, whereas monocular masking was dependent on stimulus speed. Interocular suppression was further explored using a novel manipulation, whereby stimuli were presented in dichoptic antiphase. Consistent with the predictions of a computational model, this produced weaker masking than in-phase presentation. This allowed the bandwidths of suppression to be measured without the complicating factor of additive combination of mask and test. Finally, contrast vision in strabismic amblyopia was investigated. Although amblyopes are generally believed to have impaired binocular vision, binocular summation was shown to be intact when stimuli were normalized for interocular sensitivity differences. An alternative account of amblyopia was developed, in which signals in the affected eye are subject to attenuation and additive noise prior to binocular combination.
Resumo:
PURPOSE: To design and validate a vision-specific quality-of-life assessment tool to be used in a clinical setting to evaluate low-vision rehabilitation strategy and management. METHODS: Previous vision-related questionnaires were assessed by low-vision rehabilitation professionals and patients for relevance and coverage. The 74 items selected were pretested to ensure correct interpretation. One hundred and fifty patients with low vision completed the chosen questions on four occasions to allow the selection of the most appropriate items. The vision-specific quality of life of patients with low vision was compared with that of 70 age-matched and gender-matched patients with normal vision and before and after low-vision rehabilitation in 278 patients. RESULTS: Items that were unreliable, internally inconsistent, redundant, or not relevant were excluded, resulting in the 25-item Low Vision Quality-of-Life Questionnaire (LVQOL). Completion of the LVQOL results in a summed score between 0 (a low quality of life) and 125 (a high quality of life). The LVQOL has a high internal consistency (α = 0.88) and good reliability (0.72). The average LVQOL score for a population with low vision (60.9 ± 25.1) was significantly lower than the average score of those with normal vision (100.3 ± 20.8). Rehabilitation improved the LVQOL score of those with low vision by an average of 6.8 ± 15.6 (17%). CONCLUSIONS: The LVQOL was shown to be an internally consistent, reliable, and fast method for measuring the vision-specific quality of life of the visually impaired in a clinical setting. It is able to quantify the quality of life of those with low vision and is useful in determining the effects of low-vision rehabilitation. Copyright (C) 2000 Elsevier Science Inc.
Resumo:
Background: As light-emitting diodes become more common as the light source for low vision aids, the effect of illumination colour temperature on magnifier reading performance was investigated. Methods: Reading ability (maximum reading speed, critical print size, threshold near visual acuity) using Radner charts and subjective preference was assessed for 107 participants with visual impairment using three stand magnifiers with light emitting diode illumination colour temperatures of 2,700 K, 4,500 K and 6,000 K. The results were compared with distance visual acuity, prescribed magnification, age and the primary cause of visual impairment. Results: Reading speed, critical print size and near visual acuity were unaffected by illumination colour temperature (p > 0.05). Reading metrics decreased with worsening acuity and higher levels of prescribed magnification but acuity was unaffected by age. Each colour temperature was preferred and disliked by a similar number of patients and was unrelated to distance visual acuity, prescribed magnification and age (p > 0.05). Patients had better near acuity (p = 0.002), critical print size (p = 0.034) and maximum reading speed (p <0.001), and the improvement in near from distance acuity was greater (p = 0.004) with their preferred rather than least-liked colour temperature illumination. Conclusion: A range of colour temperature illuminations should be offered to all visually impaired individuals prescribed with an optical magnifier for near tasks to optimise subjective and objective benefits.
Resumo:
Background: Prescribing magnification is typically based on distance or near visual acuity. this presumes a constant minimum angle of visual resolution with working distance and therefore enlargement of an object moved to a shorter working distance (relative distance enlargement). this study examines this premise in a visually impaired population. methods: distance letter visual acuity was measured prospectively for 380 low vision patients (distance visual acuity between 0.3 and 2.1 logmar) over the age of 57 years, along with near word visual acuity at an appropriate distance for near lens additions from +4 d to +20 D. demographic information, the disease causing low vision, contrast sensitivity, visual field and psychological status were also recorded. results: distance letter acuity was significantly related to (r = 0.84) but on average 0.1 ± 0.2 logmar better (1 ± 2 lines on a logmar chart) than near word acuity at 25 cm with a +4 d lens addition. in 39. 8 per cent of patients, near word acuity was more than 0.1 logmar worse than distance letter acuity. in 11.0 per cent of subjects, near visual acuity was more than 0.1 logmar better than distance letter acuity. the group with near word acuity worse than distance letter acuity also had lower contrast sensitivity. the group with near word acuity better than distance letter acuity was less likely to have age-Related macular degeneration. smaller print size could be read by reducing working distance (achieved by using higher near lens additions) in 86. 1 per cent, although not by as much as predicted by geometric progression in 14. 5 per cent. discussion: although distance letter and near word acuity are highly related, they are on average 1 logmar line different and this varies significantly between individuals. near word acuity did not increase linearly with relative distance enlargement in approximately one in seven visually impaired, suggesting that the measurement of visual resolution over a range of working distances will assist appropriate prescribing of magnification aids.