994 resultados para virtual topology, decomposition, hex meshing algorithms
Resumo:
The process of resources systems selection takes an important part in Distributed/Agile/Virtual Enterprises (D/A/V Es) integration. However, the resources systems selection is still a difficult matter to solve in a D/A/VE, as it is pointed out in this paper. Globally, we can say that the selection problem has been equated from different aspects, originating different kinds of models/algorithms to solve it. In order to assist the development of a web prototype tool (broker tool), intelligent and flexible, that integrates all the selection model activities and tools, and with the capacity to adequate to each D/A/V E project or instance (this is the major goal of our final project), we intend in this paper to show: a formulation of a kind of resources selection problem and the limitations of the algorithms proposed to solve it. We formulate a particular case of the problem as an integer programming, which is solved using simplex and branch and bound algorithms, and identify their performance limitations (in terms of processing time) based on simulation results. These limitations depend on the number of processing tasks and on the number of pre-selected resources per processing tasks, defining the domain of applicability of the algorithms for the problem studied. The limitations detected open the necessity of the application of other kind of algorithms (approximate solution algorithms) outside the domain of applicability founded for the algorithms simulated. However, for a broker tool it is very important the knowledge of algorithms limitations, in order to, based on problem features, develop and select the most suitable algorithm that guarantees a good performance.
Resumo:
Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica, Especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
A liberalização dos mercados de energia elétrica e a crescente integração dos recursos energéticos distribuídos nas redes de distribuição, nomeadamente as unidades de produção distribuída, os sistemas de controlo de cargas através dos programas de demand response, os sistemas de armazenamento e os veículos elétricos, representaram uma evolução no paradigma de operação e gestão dos sistemas elétricos. Este novo paradigma de operação impõe o desenvolvimento de novas metodologias de gestão e controlo que permitam a integração de todas as novas tecnologias de forma eficiente e sustentável. O principal contributo deste trabalho reside no desenvolvimento de metodologias para a gestão de recursos energéticos no contexto de redes inteligentes, que contemplam três horizontes temporais distintos (24 horas, 1 hora e 5 minutos). As metodologias consideram os escalonamentos anteriores assim como as previsões atualizadas de forma a melhorar o desempenho total do sistema e consequentemente aumentar a rentabilidade dos agentes agregadores. As metodologias propostas foram integradas numa ferramenta de simulação, que servirá de apoio à decisão de uma entidade agregadora designada por virtual power player. Ao nível das metodologias desenvolvidas são propostos três algoritmos de gestão distintos, nomeadamente para a segunda (1 hora) e terceira fase (5 minutos) da ferramenta de gestão, diferenciados pela influência que os períodos antecedentes e seguintes têm no período em escalonamento. Outro aspeto relevante apresentado neste documento é o teste e a validação dos modelos propostos numa plataforma de simulação comercial. Para além das metodologias propostas, a aplicação permitiu validar os modelos dos equipamentos considerados, nomeadamente, ao nível das redes de distribuição e dos recursos energéticos distribuidos. Nesta dissertação são apresentados três casos de estudos, cada um com diferentes cenários referentes a cenários de operação futuros. Estes casos de estudos são importantes para verificar a viabilidade da implementação das metodologias e algoritmos propostos. Adicionalmente são apresentadas comparações das metodologias propostas relativamente aos resultados obtidos, complexidade de gestão em ambiente de simulação para as diferentes fases da ferramenta proposta e os benefícios e inconvenientes no uso da ferramenta proposta.
Resumo:
Traffic Engineering (TE) approaches are increasingly impor- tant in network management to allow an optimized configuration and resource allocation. In link-state routing, the task of setting appropriate weights to the links is both an important and a challenging optimization task. A number of different approaches has been put forward towards this aim, including the successful use of Evolutionary Algorithms (EAs). In this context, this work addresses the evaluation of three distinct EAs, a single and two multi-objective EAs, in two tasks related to weight setting optimization towards optimal intra-domain routing, knowing the network topology and aggregated traffic demands and seeking to mini- mize network congestion. In both tasks, the optimization considers sce- narios where there is a dynamic alteration in the state of the system, in the first considering changes in the traffic demand matrices and in the latter considering the possibility of link failures. The methods will, thus, need to simultaneously optimize for both conditions, the normal and the altered one, following a preventive TE approach towards robust configurations. Since this can be formulated as a bi-objective function, the use of multi-objective EAs, such as SPEA2 and NSGA-II, came nat- urally, being those compared to a single-objective EA. The results show a remarkable behavior of NSGA-II in all proposed tasks scaling well for harder instances, and thus presenting itself as the most promising option for TE in these scenarios.
Resumo:
We prove that the fundamental group of any Seifert 3-manifold is conjugacy separable. That is, conjugates may be distinguished infinite quotients or, equivalently, conjugacy classes are closed in the pro-finite topology.
Resumo:
This paper presents a study of connection availability in GMPLS over optical transport networks (OTN) taking into account different network topologies. Two basic path protection schemes are considered and compared with the no protection case. The selected topologies are heterogeneous in geographic coverage, network diameter, link lengths, and average node degree. Connection availability is also computed considering the reliability data of physical components and a well-known network availability model. Results show several correspondences between suitable path protection algorithms and several network topology characteristics
Resumo:
In this project a research both in finding predictors via clustering techniques and in reviewing the Data Mining free software is achieved. The research is based in a case of study, from where additionally to the KDD free software used by the scientific community; a new free tool for pre-processing the data is presented. The predictors are intended for the e-learning domain as the data from where these predictors have to be inferred are student qualifications from different e-learning environments. Through our case of study not only clustering algorithms are tested but also additional goals are proposed.
Resumo:
This paper presents a Bayesian approach to the design of transmit prefiltering matrices in closed-loop schemes robust to channel estimation errors. The algorithms are derived for a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. Two different optimizationcriteria are analyzed: the minimization of the mean square error and the minimization of the bit error rate. In both cases, the transmitter design is based on the singular value decomposition (SVD) of the conditional mean of the channel response, given the channel estimate. The performance of the proposed algorithms is analyzed,and their relationship with existing algorithms is indicated. As withother previously proposed solutions, the minimum bit error rate algorithmconverges to the open-loop transmission scheme for very poor CSI estimates.
Resumo:
The teaching of higher level mathematics for technical students in a virtual learningenvironment poses some difficulties, but also opportunities, now specific to that virtuality.On the other hand, resources and ways to do now manly available in VLEs might soon extend to all kinds of environments.In this short presentation we will discuss anexperience carried at Universitat Oberta deCatalunya (UOC) involving (an on line university), first, the translation of LaTeX written existent materials to a web based format(specifically, a combination of XHTML andMathML), and then the integration of a symbolic calculator software (WIRIS) running as a Java applet embedded in the materials, intending to achieve an evolution from memorising concepts and repetitive algorithms to understanding and experiment concepts and the use of those algorithms.
Resumo:
This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.
Resumo:
The (n, k)-star interconnection network was proposed in 1995 as an attractive alternative to the n-star topology in parallel computation. The (n, k )-star has significant advantages over the n-star which itself was proposed as an attractive alternative to the popular hypercube. The major advantage of the (n, k )-star network is its scalability, which makes it more flexible than the n-star as an interconnection network. In this thesis, we will focus on finding graph theoretical properties of the (n, k )-star as well as developing parallel algorithms that run on this network. The basic topological properties of the (n, k )-star are first studied. These are useful since they can be used to develop efficient algorithms on this network. We then study the (n, k )-star network from algorithmic point of view. Specifically, we will investigate both fundamental and application algorithms for basic communication, prefix computation, and sorting, etc. A literature review of the state-of-the-art in relation to the (n, k )-star network as well as some open problems in this area are also provided.
Resumo:
The (n, k)-arrangement interconnection topology was first introduced in 1992. The (n, k )-arrangement graph is a class of generalized star graphs. Compared with the well known n-star, the (n, k )-arrangement graph is more flexible in degree and diameter. However, there are few algorithms designed for the (n, k)-arrangement graph up to present. In this thesis, we will focus on finding graph theoretical properties of the (n, k)- arrangement graph and developing parallel algorithms that run on this network. The topological properties of the arrangement graph are first studied. They include the cyclic properties. We then study the problems of communication: broadcasting and routing. Embedding problems are also studied later on. These are very useful to develop efficient algorithms on this network. We then study the (n, k )-arrangement network from the algorithmic point of view. Specifically, we will investigate both fundamental and application algorithms such as prefix sums computation, sorting, merging and basic geometry computation: finding convex hull on the (n, k )-arrangement graph. A literature review of the state-of-the-art in relation to the (n, k)-arrangement network is also provided, as well as some open problems in this area.
Resumo:
This research focuses on generating aesthetically pleasing images in virtual environments using the particle swarm optimization (PSO) algorithm. The PSO is a stochastic population based search algorithm that is inspired by the flocking behavior of birds. In this research, we implement swarms of cameras flying through a virtual world in search of an image that is aesthetically pleasing. Virtual world exploration using particle swarm optimization is considered to be a new research area and is of interest to both the scientific and artistic communities. Aesthetic rules such as rule of thirds, subject matter, colour similarity and horizon line are all analyzed together as a multi-objective problem to analyze and solve with rendered images. A new multi-objective PSO algorithm, the sum of ranks PSO, is introduced. It is empirically compared to other single-objective and multi-objective swarm algorithms. An advantage of the sum of ranks PSO is that it is useful for solving high-dimensional problems within the context of this research. Throughout many experiments, we show that our approach is capable of automatically producing images satisfying a variety of supplied aesthetic criteria.
Resumo:
The KCube interconnection topology was rst introduced in 2010. The KCube graph is a compound graph of a Kautz digraph and hypercubes. Compared with the at- tractive Kautz digraph and well known hypercube graph, the KCube graph could accommodate as many nodes as possible for a given indegree (and outdegree) and the diameter of interconnection networks. However, there are few algorithms designed for the KCube graph. In this thesis, we will concentrate on nding graph theoretical properties of the KCube graph and designing parallel algorithms that run on this network. We will explore several topological properties, such as bipartiteness, Hamiltonianicity, and symmetry property. These properties for the KCube graph are very useful to develop efficient algorithms on this network. We will then study the KCube network from the algorithmic point of view, and will give an improved routing algorithm. In addition, we will present two optimal broadcasting algorithms. They are fundamental algorithms to many applications. A literature review of the state of the art network designs in relation to the KCube network as well as some open problems in this field will also be given.