991 resultados para viral-campaign performance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of their remarkable mechanical properties, nanocrystalline metals have been the focus of much research in recent years. Refining their grain size to the nanometer range (<100 nm) effectively reduces their dislocation mobility, thus achieving very high yield strength and surface hardness—as predicted by the Hall–Petch relation—as well as higher strain-rate sensitivity. Recent works have additionally suggested that nanocrystalline metals exhibit an even higher compressive strength under shock loading. However, the increase in strength of these materials is generally accompanied by an important reduction in ductility. As an alternative, efforts have been focused on ultrafine crystals, i.e. polycrystals with a grain size in the range of 500 nm to 1 μm, in which “growth twins” (twins introduced inside the grain before deformation) act as barriers against dislocation movement, thus increasing the strength in a similar way as nanocrystals but without significant loss of ductility. Due to their outstanding mechanical properties, both nanocrystalline and nanotwinned ultrafine crystalline steels appear to be relevant candidates for ballistic protection. The aim of the present work is to compare their ballistic performance against coarse-grained steel, as well as to identify the effect of the hybridization with a carbon fiber–epoxy composite layer. Hybridization is proposed as a way to improve the nanocrystalline brittle properties in a similar way as is done with ceramics in other protection systems. The experimental campaign is finally complemented by numerical simulations to help identify some of the intrinsic deformation mechanisms not observable experimentally. As a conclusion, nanocrystalline and nanotwinned ultrafine crystals show a lower energy absorption than coarse-grained steel under ballistic loading, but under equal impact conditions with no penetration, deformation in the impact direction is smaller by nearly 40%. This a priori surprising difference in the energy absorption is rationalized by the more important local contribution of the deviatoric stress vs. volumetric stress under impact than under uniaxial deformation. Ultimately, the deformation advantage could be exploited in the future for personal protection systems where a small deformation under impact is of key importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a methodology for the integral energy performance characterization (thermal, daylighting and electrical behavior) of semi-transparent photovoltaic modules (STPV) under real operation conditions is presented. An outdoor testing facility to analyze simultaneously thermal, luminous and electrical performance of the devices has been designed, constructed and validated. The system, composed of three independent measurement subsystems, has been operated in Madrid with four prototypes of a-Si STPV modules, each one corresponding to a specific degree of transparency. The extensive experimental campaign, continued for a whole year rotating the modules under test, has validated the reliability of the testing facility under varying environmental conditions. The thermal analyses show that both the solar protection and insulating properties of the laminated prototypes are lower than those achieved by a reference glazing whose characteristics are in accordance with the Spanish Technical Building Code. Daylighting analysis shows that STPV elements have an important lighting energy saving potential that could be exploited through their integration with strategies focused to reduce illuminance values in sunny conditions. Finally, the electrical tests show that the degree of transparency is not the most determining factor that affects the conversion efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was the determination of the deforming micromechanisms of needlepunched felts subjected to impact loads. A large experimental campaign has been carried out to analyze the influence of the fiber alignment in the ballistic performance. Ballistic limit curves of predeformed samples were compared. The fiber realignment was experimentally measure by means of 2D X-Ray diffraction. Higher specific absorption was observed for samples with a more isotropic mechanical response. A constitutive physicallybased model was developed within the context of the finite element method, which provided the constitutive response for a mesodomain including micromechanical aspects as fiber alignment, fiber sliding and pull-out. The macroscopic response has been validated with the experimental results, showing a very good agreement. The absorbed energy by the material during the impact was predicted and the fiber realignment evolution was also obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrating Photovoltaics (CPV) is an alternative to flat-plate module photovoltaic (PV) technology. The bankability of CPV projects is an important issue to pave the way toward a swift and sustained growth in this technology. The bankability of a PV plant is generally addressed through the modeling of its energy yield under a baseline loss scenario, followed by an on-site measurement campaign aimed at verifying its energy performance. This paper proposes a procedure for assessing the performance of a CPV project, articulated around four main successive steps: Solar Resource Assessment, Yield Assessment, Certificate of Provisional Acceptance, and Certificate of Final Acceptance. This methodology allows the long-term energy production of a CPV project to be estimated with an associated uncertainty of ≈5%. To our knowledge, no such method has been proposed to the CPV industry yet, and this critical situation has hindered or made impossible the completion of several important CPV projects undertaken in the world. The main motive for this proposed method is to bring a practical solution to this urgent problem. This procedure can be operated under a wide range of climatic conditions, and makes it possible to assess the bankability of a CPV plant whose design uses any of the technologies currently available on the market. The method is also compliant with both international standards and local regulations. In consequence, its applicability is both general and international.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viral Bodies: Uncontrollable Blackness in Popular Culture and Everyday Life maps rapidly circulated performances of Blackness across visual media that collapse Black bodies into ubiquitous “things.” Throughout my dissertation, I use viral performance to describe the uncontrollable discursive circulation of bodies, their behaviors, and the ideas around them. In particular, viral performance is employed to describe the complicated ways that (mis)understandings of Black bodies spread and are often transformed into common-sense beliefs. As viral performances, Black bodies are often made more visible, while simultaneously becoming more opaque. This dissertation examines the recurrence of viral performances of Blackness in viral videos online, film, and photography/images. I argue that viral performances make products that reinscribe stereotypical notions of Blackness while also generating paths of alterity—which contradict the normalized clichés and provide desirable possibilities for Black performance. Viral Bodies forges a new dialogue between visual and aural technologies, performance, and larger historic discourses that script Black bodies as visually (and sonically) deviant subjects. I am interested in how technologies complicate the re-presentation of images, ideas, and ideologies—producing a necessity for new decipherings of performances of Blackness in popular culture and everyday life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exploration of sustainable fuels and their influence on reductions in diesel emissions are nowadays a challenge for the engine and fuel researchers. This study investigates the role of fuel-borne oxygen on engine performance and exhaust emissions with a special emphasis on diesel particulate and nitric oxide (NO) emissions. A number of oxygenated-blends were prepared with waste cooking biodiesel as a base oxygenated fuel. Triacetin, a derivative from transesterified biodiesel was chosen for its high oxygen content and superior fuel properties. The experimental campaign was conducted with a 6-cylinder, common rail turbocharged diesel engine equipped with highly precise instruments for nano and other size particles and other emissions. All experiments were performed in accordance with European Stationary Cycle (ESC 13-mode). A commercial diesel was chosen as a reference fuel with 0% oxygen and five other oxygenated blends having a range of 6.02–14.2% oxygen were prepared. The experimental results revealed that the oxygenated blends having higher a percentage of fuel-borne oxygen reduced particulate matter (PM), particle number (PN), unburned hydrocarbon (UBHC) and carbon monoxide (CO) emissions to a significantly low level with a slight penalty of NO emissions. The main target of this study was to effectively utilise triacetin as an additive for waste cooking biodiesel and suppress emissions without deteriorating engine performance. The key finding of this investigation is the significant reductions in both particle mass and number emissions simultaneously without worsening engine performance with triacetin-biodiesel blends. Reductions in both particle mass and number emissions with a cost-effective additive would be a new dimension for the fuel and engine researchers to effectively use triacetin as an emission suppressor in the future.