964 resultados para video surveillance


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper addresses the problem of how to select the optimal number of sensors and how to determine their placement in a given monitored area for multimedia surveillance systems. We propose to solve this problem by obtaining a novel performance metric in terms of a probability measure for accomplishing the task as a function of set of sensors and their placement. This measure is then used to find the optimal set. The same measure can be used to analyze the degradation in system 's performance with respect to the failure of various sensors. We also build a surveillance system using the optimal set of sensors obtained based on the proposed design methodology. Experimental results show the effectiveness of the proposed design methodology in selecting the optimal set of sensors and their placement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recently, several distributed video coding (DVC) solutions based on the distributed source coding (DSC) paradigm have appeared in the literature. Wyner-Ziv (WZ) video coding, a particular case of DVC where side information is made available at the decoder, enable to achieve a flexible distribution of the computational complexity between the encoder and decoder, promising to fulfill novel requirements from applications such as video surveillance, sensor networks and mobile camera phones. The quality of the side information at the decoder has a critical role in determining the WZ video coding rate-distortion (RD) performance, notably to raise it to a level as close as possible to the RD performance of standard predictive video coding schemes. Towards this target, efficient motion search algorithms for powerful frame interpolation are much needed at the decoder. In this paper, the RD performance of a Wyner-Ziv video codec is improved by using novel, advanced motion compensated frame interpolation techniques to generate the side information. The development of these type of side information estimators is a difficult problem in WZ video coding, especially because the decoder only has available some reference, decoded frames. Based on the regularization of the motion field, novel side information creation techniques are proposed in this paper along with a new frame interpolation framework able to generate higher quality side information at the decoder. To illustrate the RD performance improvements, this novel side information creation framework has been integrated in a transform domain turbo coding based Wyner-Ziv video codec. Experimental results show that the novel side information creation solution leads to better RD performance than available state-of-the-art side information estimators, with improvements up to 2 dB: moreover, it allows outperforming H.264/AVC Intra by up to 3 dB with a lower encoding complexity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents methods for moving object detection in airborne video surveillance. The motion segmentation in the above scenario is usually difficult because of small size of the object, motion of camera, and inconsistency in detected object shape etc. Here we present a motion segmentation system for moving camera video, based on background subtraction. An adaptive background building is used to take advantage of creation of background based on most recent frame. Our proposed system suggests CPU efficient alternative for conventional batch processing based background subtraction systems. We further refine the segmented motion by meanshift based mode association.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a video surveillance framework that robustly and efficiently detects abandoned objects in surveillance scenes. The framework is based on a novel threat assessment algorithm which combines the concept of ownership with automatic understanding of social relations in order to infer abandonment of objects. Implementation is achieved through development of a logic-based inference engine based on Prolog. Threat detection performance is conducted by testing against a range of datasets describing realistic situations and demonstrates a reduction in the number of false alarms generated. The proposed system represents the approach employed in the EU SUBITO project (Surveillance of Unattended Baggage and the Identification and Tracking of the Owner).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wireless Mesh Networks (WMNs) are increasingly deployed to enable thousands of users to share, create, and access live video streaming with different characteristics and content, such as video surveillance and football matches. In this context, there is a need for new mechanisms for assessing the quality level of videos because operators are seeking to control their delivery process and optimize their network resources, while increasing the user’s satisfaction. However, the development of in-service and non-intrusive Quality of Experience assessment schemes for real-time Internet videos with different complexity and motion levels, Group of Picture lengths, and characteristics, remains a significant challenge. To address this issue, this article proposes a non-intrusive parametric real-time video quality estimator, called MultiQoE that correlates wireless networks’ impairments, videos’ characteristics, and users’ perception into a predicted Mean Opinion Score. An instance of MultiQoE was implemented in WMNs and performance evaluation results demonstrate the efficiency and accuracy of MultiQoE in predicting the user’s perception of live video streaming services when compared to subjective, objective, and well-known parametric solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automatic detection of suspicious activities in CCTV camera feeds is crucial to the success of video surveillance systems. Such a capability can help transform the dumb CCTV cameras into smart surveillance tools for fighting crime and terror. Learning and classification of basic human actions is a precursor to detecting suspicious activities. Most of the current approaches rely on a non-realistic assumption that a complete dataset of normal human actions is available. This paper presents a different approach to deal with the problem of understanding human actions in video when no prior information is available. This is achieved by working with an incomplete dataset of basic actions which are continuously updated. Initially, all video segments are represented by Bags-Of-Words (BOW) method using only Term Frequency-Inverse Document Frequency (TF-IDF) features. Then, a data-stream clustering algorithm is applied for updating the system's knowledge from the incoming video feeds. Finally, all the actions are classified into different sets. Experiments and comparisons are conducted on the well known Weizmann and KTH datasets to show the efficacy of the proposed approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using Media-Access-Control (MAC) address for data collection and tracking is a capable and cost effective approach as the traditional ways such as surveys and video surveillance have numerous drawbacks and limitations. Positioning cell-phones by Global System for Mobile communication was considered an attack on people's privacy. MAC addresses just keep a unique log of a WiFi or Bluetooth enabled device for connecting to another device that has not potential privacy infringements. This paper presents the use of MAC address data collection approach for analysis of spatio-temporal dynamics of human in terms of shared space utilization. This paper firstly discuses the critical challenges and key benefits of MAC address data as a tracking technology for monitoring human movement. Here, proximity-based MAC address tracking is postulated as an effective methodology for analysing the complex spatio-temporal dynamics of human movements at shared zones such as lounge and office areas. A case study of university staff lounge area is described in detail and results indicates a significant added value of the methodology for human movement tracking. By analysis of MAC address data in the study area, clear statistics such as staff’s utilisation frequency, utilisation peak periods, and staff time spent is obtained. The analyses also reveal staff’s socialising profiles in terms of group and solo gathering. The paper is concluded with a discussion on why MAC address tracking offers significant advantages for tracking human behaviour in terms of shared space utilisation with respect to other and more prominent technologies, and outlines some of its remaining deficiencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel computer vision techniques have been developed to automatically detect unusual events in crowded scenes from video feeds of surveillance cameras. The research is useful in the design of the next generation intelligent video surveillance systems. Two major contributions are the construction of a novel machine learning model for multiple instance learning through compressive sensing, and the design of novel feature descriptors in the compressed video domain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One main challenge in developing a system for visual surveillance event detection is the annotation of target events in the training data. By making use of the assumption that events with security interest are often rare compared to regular behaviours, this paper presents a novel approach by using Kullback-Leibler (KL) divergence for rare event detection in a weakly supervised learning setting, where only clip-level annotation is available. It will be shown that this approach outperforms state-of-the-art methods on a popular real-world dataset, while preserving real time performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Power line inspection is a vital function for electricity supply companies but it involves labor-intensive and expensive procedures which are tedious and error-prone for humans to perform. A possible solution is to use an unmanned aerial vehicle (UAV) equipped with video surveillance equipment to perform the inspection. This paper considers how a small, electrically driven rotorcraft conceived for this application could be controlled by visually tracking the overhead supply lines. A dynamic model for a ducted-fan rotorcraft is presented and used to control the action of an Air Vehicle Simulator (AVS), consisting of a cable-array robot. Results show how visual data can be used to determine, and hence regulate in closed loop, the simulated vehicle’s position relative to the overhead lines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is not uncommon to hear a person of interest described by their height, build, and clothing (i.e. type and colour). These semantic descriptions are commonly used by people to describe others, as they are quick to communicate and easy to understand. However such queries are not easily utilised within intelligent video surveillance systems, as they are difficult to transform into a representation that can be utilised by computer vision algorithms. In this paper we propose a novel approach that transforms such a semantic query into an avatar in the form of a channel representation that is searchable within a video stream. We show how spatial, colour and prior information (person shape) can be incorporated into the channel representation to locate a target using a particle-filter like approach. We demonstrate state-of-the-art performance for locating a subject in video based on a description, achieving a relative performance improvement of 46.7% over the baseline. We also apply this approach to person re-detection, and show that the approach can be used to re-detect a person in a video steam without the use of person detection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a novel multiview fusion scheme for recognizing human identity based on gait biometric data. The gait biometric data is acquired from video surveillance datasets from multiple cameras. Experiments on publicly available CASIA dataset show the potential of proposed scheme based on fusion towards development and implementation of automatic identity recognition systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Video surveillance infrastructure has been widely installed in public places for security purposes. However, live video feeds are typically monitored by human staff, making the detection of important events as they occur difficult. As such, an expert system that can automatically detect events of interest in surveillance footage is highly desirable. Although a number of approaches have been proposed, they have significant limitations: supervised approaches, which can detect a specific event, ideally require a large number of samples with the event spatially and temporally localised; while unsupervised approaches, which do not require this demanding annotation, can only detect whether an event is abnormal and not specific event types. To overcome these problems, we formulate a weakly-supervised approach using Kullback-Leibler (KL) divergence to detect rare events. The proposed approach leverages the sparse nature of the target events to its advantage, and we show that this data imbalance guarantees the existence of a decision boundary to separate samples that contain the target event from those that do not. This trait, combined with the coarse annotation used by weakly supervised learning (that only indicates approximately when an event occurs), greatly reduces the annotation burden while retaining the ability to detect specific events. Furthermore, the proposed classifier requires only a decision threshold, simplifying its use compared to other weakly supervised approaches. We show that the proposed approach outperforms state-of-the-art methods on a popular real-world traffic surveillance dataset, while preserving real time performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crowd flow segmentation is an important step in many video surveillance tasks. In this work, we propose an algorithm for segmenting flows in H.264 compressed videos in a completely unsupervised manner. Our algorithm works on motion vectors which can be obtained by partially decoding the compressed video without extracting any additional features. Our approach is based on modelling the motion vector field as a Conditional Random Field (CRF) and obtaining oriented motion segments by finding the optimal labelling which minimises the global energy of CRF. These oriented motion segments are recursively merged based on gradient across their boundaries to obtain the final flow segments. This work in compressed domain can be easily extended to pixel domain by substituting motion vectors with motion based features like optical flow. The proposed algorithm is experimentally evaluated on a standard crowd flow dataset and its superior performance in both accuracy and computational time are demonstrated through quantitative results.