994 resultados para vibrational structure
Resumo:
We have studied the borate mineral rhodizite (K, Cs)Al4Be4(B, Be)12O28 using a combination of DEM with EDX and vibrational spectroscopic techniques. The mineral occurs as colorless, gray, yellow to white crystals in the triclinic crystal system. The studied sample is from the Antandrokomby Mine, Sahatany valley, Madagascar. The mineral is prized as a semi-precious jewel. Semi-quantitative chemical composition shows a Al, Ca, borate with minor amounts of K, Mg and Cs. The mineral has a characteristic borate Raman spectrum and bands are assigned to the stretching and bending modes of B, Be and Al. No Raman bands in the OH stretching region were observed.
Resumo:
The mineral beraunite from Boca Rica pegmatite in Minas Gerais with theoretical formula Fe2+Fe5 3+(PO4)4(OH)5⋅4H2O has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 990 cm-1 and 1011 cm-1. These bands are attributed to the PO4 3- v, symmetric stretching mode. The m3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm-1 are assigned to the m3 antisymmetric stretching vibrations of PO4 3- and the HOPO3 2- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of beraunite. The series of Raman bands at 567, 582,601, 644, 661, 673, and 687 cm-1 are assigned to the PO4 3- v2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm-1 are attributed to the PO4 3- and OPO3 2- v4 bending modes. No Raman bands of beraunite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral beraunite.
Resumo:
The mineral leightonite, a rare sulphate mineral of formula K2Ca2Cu(SO4)4.2H2O, has been studied using a combination of electron probe and vibrational spectroscopy. The mineral is characterized by an intense Raman band at 991 cm-1 attributed to the SO2- 4 m1 symmetric stretching mode. A series of Raman bands at 1047, 1120, 1137, 1163 and 1177 cm-1 assigned to the SO2- 4 m3 antisymmetric stretching modes. The observation of multiple bands shows that the symmetry of the sulphate anion is reduced. Multiple Raman and infrared bands in the OH stretching region shows that water in the structure of leightonite is in a range of molecular environments.
Resumo:
The alunite supergroup of minerals is a large hydroxy-sulfate mineral group, which has seen renewed interest following their discovery on Mars. Numerous reviews exist concerning nomenclature, formation, and natural occurrence of this mineral group. Sulfate minerals in general are widely studied and their vibrational spectra are well characterized. However, no specific review concerning alunite and jarosite spectroscopy and crystal structure has been forthcoming. This review focuses on the controversial aspects of the crystal structure and vibrational spectroscopy of jarosite and alunite minerals. Inconsistencies regarding band assignments especially in the 1000–400 cm−1 region plague these two mineral groups and result in different band assignments among the various spectroscopic studies. There are significant crystallographic and magnetic structure ambiguities with regards to ammonium and hydronium end-members, namely, the geometry these two ions assume in the structure and the fact that hydronium jarosite is a spin glass. It was also found that the synthetic causes for the super cell in plumbojarosite, minamiite, huangite, and walthierite are not known.
Resumo:
The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11⋅3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm−1 and 1014 cm−1. These bands are attributed to the PO43− ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm−1 are attributed to the ν3 antisymmetric stretching bands of the PO43− and HOPO32− units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm−1are assigned to the PO43− ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm−1 are attributed to the PO43− and HOPO32− ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm−1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm−1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm−1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.
Resumo:
Priceite is a calcium borate mineral and occurs as white crystals in the monoclinic pyramidal crystal system. We have used a combination of Raman spectroscopy with complimentary infrared spectroscopy and scanning electron microscopy with Energy-dispersive X-ray Spectroscopy (EDS) to study the mineral priceite. Chemical analysis shows a pure phase consisting of B and Ca only. Raman bands at 956, 974, 991, and 1019 cm−1 are assigned to the BO stretching vibration of the B10O19 units. Raman bands at 1071, 1100, 1127, 1169, and 1211 cm−1 are attributed to the BOH in-plane bending modes. The intense infrared band at 805 cm−1 is assigned to the trigonal borate stretching modes. The Raman band at 674 cm−1 together with bands at 689, 697, 736, and 602 cm−1 are assigned to the trigonal and tetrahedral borate bending modes. Raman spectroscopy in the hydroxyl stretching region shows a series of bands with intense Raman band at 3555 cm−1 with a distinct shoulder at 3568 cm−1. Other bands in this spectral region are found at 3221, 3385, 3404, 3496, and 3510 cm−1. All of these bands are assigned to water stretching vibrations. The observation of multiple bands supports the concept of water being in different molecular environments in the structure of priceite. The molecular structure of a natural priceite has been assessed using vibrational spectroscopy.
Resumo:
We have studied the boron containing mineral ezcurrite Na4B10O17·7H2O using electron microscopy and vibrational spectroscopy. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1037 cm−1 is assigned to BO stretching vibration. Raman bands at 1129, 1163, 1193 cm−1 are attributed to BO stretching vibration of the tetrahedral units. The Raman band at 947 cm−1 is attributed to the antisymmetric stretching modes of tetrahedral boron. The sharp Raman peak at 1037 cm−1 is from the 11-B component such a mode, then it should have a smaller 10-B satellite near (1.03) × (1037) = 1048 cm−1, and indeed a small peak at 1048 is observed. The broad Raman bands at 3186, 3329, 3431, 3509, 3547 and 3576 cm−1 are assigned to water stretching vibrations. Broad infrared bands at 3170, 3322, 3419, 3450, 3493, 3542, 3577 and 3597 cm−1 are also assigned to water stretching vibrations. Infrared bands at 1330, 1352, 1389, 1407, 1421 and 1457 cm−1 are assigned to the antisymmetric stretching vibrations of trigonal boron. The observation of so many bands suggests that there is considerable variation in the structure of ezcurrite. Infrared bands at 1634, 1646 and 1681 cm−1 are assigned to water bending modes. The number of water bending modes is in harmony with the number of water stretching vibrations.
Resumo:
The mineral barahonaite is in all probability a member of the smolianinovite group. The mineral is an arsenate mineral formed as a secondary mineral in the oxidized zone of sulphide deposits. We have studied the barahonaite mineral using a combination of Raman and infrared spectroscopy. The mineral is characterized by a series of Raman bands at 863 cm−1 with low wavenumber shoulders at 802 and 828 cm−1. These bands are assigned to the arsenate and hydrogen arsenate stretching vibrations. The infrared spectrum shows a broad spectral profile. Two Raman bands at 506 and 529 cm−1 are assigned to the triply degenerate arsenate bending vibration (F 2, ν4), and the Raman bands at 325, 360, and 399 cm−1 are attributed to the arsenate ν2 bending vibration. Raman and infrared bands in the 2500–3800 cm−1 spectral range are assigned to water and hydroxyl stretching vibrations. The application of Raman spectroscopy to study the structure of barahonaite is better than infrared spectroscopy, probably because of the much higher spatial resolution.
Resumo:
The mineral ushkovite has been analyzed using a combination of electron microscopy with EDX and vibrational spectroscopy. Chemical analysis shows the mineral contains P, Mg with very minor Fe. Thus, the formula of the studied ushkovite is Mg32+(PO4)2·8H2O. The Raman spectrum shows an intense band at 953 cm−1 assigned to the ν1 symmetric stretching mode. In the infrared spectra complexity exists with multiple antisymmetric stretching vibrations observed, due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong infrared bands around 827 cm−1 are attributed to water librational modes. The Raman spectra of the hydroxyl-stretching region are complex with overlapping broad bands. Hydroxyl stretching vibrations are identified at 2881, 2998, 3107, 3203, 3284 and 3457 cm−1. The wavenumber band at 3457 cm−1 is attributed to the presence of FeOH groups. This complexity is reflected in the water HOH bending modes where a strong infrared band centered around 1653 cm−1 is found. Such a band reflects the strong hydrogen bonding of the water molecules to the phosphate anions in adjacent layers. Spectra show three distinct OH bending bands from strongly hydrogen-bonded, weakly hydrogen bonded water and non-hydrogen bonded water. Vibrational spectroscopy enhances our knowledge of the molecular structure of ushkovite.
Resumo:
We have studied the borate mineral szaibelyite MgBO2(OH) using electron microscopy and vibrational spectroscopy. EDS spectra show a phase composed of Mg with minor amounts of Fe. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1099 cm−1 with a shoulder band at 1093 cm−1 is assigned to BO stretching vibration. Raman bands at 1144, 1157, 1229, 1318 cm−1 are attributed to the BOH in-plane bending modes. Raman bands at 836 and 988 cm−1 are attributed to the antisymmetric stretching modes of tetrahedral boron. The infrared bands at 3559 and 3547 cm−1 are assigned to hydroxyl stretching vibrations. Broad infrared bands at 3269 and 3398 cm−1 are assigned to water stretching vibrations. Infrared bands at 1306, 1352, 1391, 1437 cm−1 are assigned to the antisymmetric stretching vibrations of trigonal boron. Vibrational spectroscopy enables aspects of the molecular structure of the borate mineral szaibelyite to be assessed.
Resumo:
The SCF/DZP and MP2/DZP methods of ab initio quantum chemistry have been utilized to study the structure, vibrational spectra, binding energy, and barrier to internal rotation of methyl isocyanide-borane and acetonitrile-borane adducts. The eclipsed conformation of the complexes was predicted to be a minimum, and the staggered form is a transition state with a barrier height of about 10 cal/mol. The vibrational analyses of CH3NC-BH3 and CH3CN-BH3 and several of their isotopomers have been carried out by the GF matrix method. Computations have also been carried out for free CH3NC and CH3CN in order to investigate the changes in CH3NC and CH3CN as a result of their complex formation with BH3. To obtain an acceptable set of force constants, a recently proposed procedure ''RECOVES'' has been utilized. The increase in the N=C/C=N stretching force constant of CH3NC/CH3CN on adduct formation is interpreted with the help of Parr and Borkman's model. The binding energies for the two adducts have been determined taking basis set superposition error (BSSE) into consideration. The effect of the BSSE on structure, dipole moment, and vibrational frequencies of CH3CN and CH3NC is also evaluated. The predicted infrared band intensities for the two complexes are in good agreement with the experimentally observed features, and they have been utilized in the assignment of vibrational frequencies.
Resumo:
We report here the results of structural and vibrational studies on the solid solution Fe1 ? xNixPS3 (1 greater-or-equal, slanted x greater-or-equal, slanted 0) systems. From the structural analysis, we show that there is a lattice compaction as the composition x is varied from 0 to 1, the basic lattice symmetry being maintained. We find that the compaction is more in the basal plane. These subtle structural changes are also reflected in the vibrational bands. We observed splitting of certain bands due to these small changes in the lattice constants, which we explained as arising from a correlation splitting. These changes in the vibrational bands have also been seen on cooling where there is a preferential thermal compaction in the basal plane compared to that perpendicular to the plane.
Resumo:
Effects of basis set and electron correlation on the equilibrium geometry, force constants and vibrational spectra of BH3NH3 have been studied. A series of basis sets ranging from double zeta to triple zeta including polarization and diffuse functions have been utilized. All the SCF based calculations overestimate the dative B-N bond distance and considerable improvement occurs when the treatment for electron correlation is introduced. Detailed vibrational analysis for BH3NH3 has been carried out. The mean absolute percentage deviation of the ab initio predicted vibration frequencies of (BH3NH3)-B-11 from the experiment is about 10% for the SCF based calculations and the MP2 method shows better agreement, the overall deviation being 5-6%. The ground state effective force constants of BH3NH3 were obtained using RECOVES procedure. The RECOVES sets of force constants are found to be highly satisfactory for the prediction of the vibrational frequencies of different isotopomers of BH3NH3. The mean absolute percentage deviation of the calculated frequencies of different isotopomers from the experiment is much less than 1%. The RECOVES-MP2/augDZP set of force constants was found to be the best set among the different sets for this molecule. Theoretical infrared intensities are in fair agreement with the observed spectral features.
Resumo:
Efavirenz, (S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3 ,1-benzoxazin-2-one, is an anti HIV agent belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. A systematic quantum chemical study of the possible conformations, their relative stabilities and vibrational spectra of efavirenz has been reported. Structural and spectral characteristics of efavirenz have been studied by vibrational spectroscopy and quantum chemical methods. Density functional theory (DFT) calculations for potential energy curve, optimized geometries and vibrational spectra have been carried out using 6-311++G(d,p) basis sets and B3LYP functionals. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of the most stable form of efavirenz. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The infrared and the Raman spectra of the molecule based on OFT calculations show reasonable agreement with the experimental results. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Poly (beta-L-malic acid) (PMLA) is a biodegradable polymer and it has various important applications in the biomedical field. In the present work the structural and spectral characteristics of PMLA have been studied by methods of infrared. Raman spectroscopy and quantum chemistry. Electrostatic potential surface, optimized geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by density functional theory (DFT) using oligomeric approach employing B3LYP with complete relaxation in the potential energy surface using 6-311++G (d, p) basis set. Based on results, we have discussed the correlation between the vibrational modes and the structure of the PMLA. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The calculated infrared and the Raman spectra of the polymer based on DFT calculations show reasonable agreement with the experimental results. (c) 2012 Elsevier Ltd. All rights reserved.