995 resultados para vertical flux


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on discrete samples, we report new high-resolution records of the ~185 kyr Iceland Basin (IB) geomagnetic excursion from Ocean Drilling Project (ODP) Site 1063 on the Bermuda Rise (sedimentation rate 32 cm/kyr) and from ODP Site 983 in the far North Atlantic (sedimentation rate 18 cm/kyr). Two records from Holes 1063A and 1063B are very consistent, and provide the highest resolution of the detailed field behaviour during the IB excursion obtained so far. Inclination records from Holes 983B and 983C in the far North Atlantic are also very consistent, whereas declination anomalies deviate more notably. The pseudo-Thellier (PT) technique was applied along with more conventional palaeointensity proxies (NRM/ARM and NRM/kappa) to recover relative palaeointensity (RPI) estimates from Hole 1063A and Hole 983B. As expected, these proxies indicate that the field intensity generally dropped at both sites during the IB excursion, but also that the history of RPI from the two sites is different. VGPs from Site 1063 indicate that the field at this location experienced some stop-and-go behaviour between patches of intense vertical flux over North America and the tip of South America, areas which coincide fairly well with patches of preferred transitional VGP clustering from reversals and zones of high seismic velocity in the lower mantle. Changes in RPI at this location were generally gradual, possibly due to the proximity of these flux patches, and the first period of VGP-clustering over North America was accompanied by a conspicuous increase in RPI. VGPs from Site 983 track along a different path, and the associated RPI changes are very abrupt and completely synchronous with the onset and termination of the excursion. The differing VGP paths from Sites 1063 and 983 indicate that the global field structure during the IB excursion was not dominated by a single dipole.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies of fecal pellet flux show that a large percentage of pellets produced in the upper ocean is degraded within the surface waters. It is therefore important to investigate these degradation mechanisms to understand the role of fecal pellets in the oceanic carbon cycle. Degradation of pellets is mainly thought to be caused by coprophagy (ingestion of fecal pellets) by copepods, and especially by the ubiquitous copepods Oithona spp. We examined fecal pellet ingestion rate and feeding behavior of O. similis and 2 other dominant copepod species from the North Sea (Calanus helgolandicus and Pseudocalanus elongatus). All investigations were done with fecal pellets as the sole food source and with fecal pellets offered together with an alternative suitable food source. The ingestion of fecal pellets by all 3 copepod species was highest when offered together with an alternative food source. No feeding behavior was determined for O. similis due to the lack of pellet capture in those experiments. Fecal pellets offered together with an alternative food source increased the filtration activity by C. helgolandicus and P. elongatus and thereby the number of pellets caught in their feeding current. However, most pellets were rejected immediately after capture and were often fragmented during rejection. Actual ingestion of captured pellets was rare (<37% for C. helgolandicus and <24% for P. elongatus), and only small pellet fragments were ingested unintentionally along with alternative food. We therefore suggest coprorhexy (fragmentation of pellets) to be the main effect of copepods on the vertical flux of fecal pellets. Coprorhexy turns the pellets into smaller, slower-sinking particles that can then be degraded by other organisms such as bacteria and protozooplankton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MedFlux sampling was carried out at the French JGOFS DYFAMED (DYnamique des Flux Atmospheriques en MEDiterranee) site in the Ligurian Sea (northwestern Mediterranean), 52km off Nice (431200N, 71400E) in 2300m water depth. In 2003, a mooring with sediment trap arrays was deployed 6 March (day of year, DOY 65) and recovered 6 May (DOY 126); this trap deployment will be referred to as Period 1 (P1). The array was redeployed a week later on 14 May (DOY 134) and recovered again on 30 June (DOY 181); this trap deployment will be referred to as Period 2 (P2). Indented-rotating sphere (IRS) valve traps were fitted with TS carousels to determine temporal variability of particulate matter flux. TS traps were fitted with ''dimpled'' spheres. Vertical flux at 200m depth is considered to be equivalent to new or export production, and traps sampled at 238 and 117m during P1 and P2, respectively. We also collected TS material at 711m during P1 and at 1918m during P2. Upon recovery, samples were split using a McLaneTM WSD splitter to allow multiple chemical analyses. Here we report 2003 data on TS particulate mass, and the contributions of organic carbon (OC), opal, lithogenic material and calcium carbonate to mass. In 2005, traps were deployed as described above for 55 d during a single period from 4 March (DOY 63) to 1 May (DOY 121). TS traps were fitted with ''dimpled'' spheres. TS particulate matter was collected from 313 to 924 m.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Millennial-scale dry events in the Northern Hemisphere monsoon regions during the last Glacial period are commonly attributed to southward shifts of the Intertropical Convergence Zone (ITCZ) associated with an intensification of the northeasterly (NE) trade wind system during intervals of reduced Atlantic meridional overturning circulation (AMOC). Through the use of high-resolution last deglaciation pollen records from the continental slope off Senegal, our data show that one of the longest and most extreme droughts in the western Sahel history, which occurred during the North Atlantic Heinrich Stadial 1 (HS1), displayed a succession of three major phases. These phases progressed from an interval of maximum pollen representation of Saharan elements between ~19 and 17.4 kyr BP indicating the onset of aridity and intensified NE trade winds, followed by a millennial interlude of reduced input of Saharan pollen and increased input of Sahelian pollen, to a final phase between ~16.2 and 15 kyr BP that was characterized by a second maximum of Saharan pollen abundances. This change in the pollen assemblage indicates a mid-HS1 interlude of NE trade wind relaxation, occurring between two distinct trade wind maxima, along with an intensified mid-tropospheric African Easterly Jet (AEJ) indicating a substantial change in West African atmospheric processes. The pollen data thus suggest that although the NE trades have weakened, the Sahel drought remained severe during this time interval. Therefore, a simple strengthening of trade winds and a southward shift of the West African monsoon trough alone cannot fully explain millennial-scale Sahel droughts during periods of AMOC weakening. Instead, we suggest that an intensification of the AEJ is needed to explain the persistence of the drought during HS1. Simulations with the Community Climate System Model indicate that an intensified AEJ during periods of reduced AMOC affected the North African climate by enhancing moisture divergence over the West African realm, thereby extending the Sahel drought for about 4000 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship between the vertical flux of microplankton and its standing stock in the upper ocean was determined in the subtropical (33°N, 21°W) and tropical (18°N, 30°W) northeast Atlantic in spring 1989 as part of the North Atlantic Bloom Experiment. In the subtropical area specific sedimentation rates at all depths were low (0.1% of standing stock) and 10-20% of settled particulate organic carbon (POC) was viable diatoms. The high contribution of viable diatoms, their empty frustules and tintinnid loricae to settled material characterized a system in transition between a diatom bloom sedimentation event and an oligotrophic summer situation. In the tropical area specific sedimentation rates were similar, but absolute rates (3 mg C m?2 day?1) were only about a third of those in the subtropical area. Microplankton carbon contributed only 2-6% to POC. Hard parts of heterotrophs found embedded in amorphous detrital matter suggest that particles had passed through a complex food web prior to sedimentation. Coccolithophorids, not diatoms dominated the autotrophic fraction in traps, and a shift in the composition of autotrophs may indicate a perturbation of the oligotrophic system.