952 resultados para ventromedial hypothalamic nucleus
Resumo:
The amygdala, the dorsal periaqueductal gray (dPAG), and the media] hypothalamus have long been recognized to be a neural system responsible for the generation and elaboration of unconditioned fear in the brain. It is also well known that this neural substrate is under a tonic inhibitory control exerted by GABA mechanisms. However, whereas there is a growing body of evidence to suggest that the amygdala and dPAG are also able to integrate conditioned fear, it is still unclear, however, how the distinct hypothalamic nuclei participate in fear conditioning. In this work we aimed to examine the extent to which the gabaergic mechanisms of this brain region are involved in conditioned fear using the fear-potentiated startle (FPS). Muscimol, a GABA-A receptor agonist, and semicarbazide, an inhibitor of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD), were used as an enhancer and inhibitor of the GABA mechanisms, respectively. Muscimol and semicarbazide were injected into the anterior hypothalamus (AHN). the dorsomedial part of the ventromedial nucleus (VMHDM), the dorsomedial (DMH) or the dorsal premammillary (PMD) nuclei of male Wistar rats before test sessions of the fear conditioning paradigm. The injections into the DMH and PMD did not produce any significant effects on FPS. On the other hand, muscimol injections into the AHN and VMHDM caused significant reduction in FPS. These results indicate that injections of muscimol and semicarbazide into the DMH and PMD fail to change the FPS, whereas the enhancement of the GABA transmission in the AHN and VMHDM produces a reduction of the conditioned fear responses. On the other hand, the inhibition of this transmission led to an increase of this conditioned response in the AHN. Thus, whereas DMH and PMD are known to be part of the caudal-most region of the medial hypothalamic defensive system, which integrates unconditioned fear, systems mediating conditioned fear select the AHN and VMHDM nuclei that belong to the rostral-most portion of the hypothalamic defense area. Thus, distinct subsets of neurons in the hypothalamus could mediate different aspects of the defensive responses. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We report on the cardiovascular effects of L-glutamate (L-glu) microinjection into the hypothalamic paraventricular nucleus (PVN) as well as the mechanisms involved in their mediation. L-glu microinjection into the PVN caused dose-related pressor and tachycardiac responses in unanesthetized rats. These responses were blocked by intravenous (i.v.) pretreatment with the ganglion blocker pentolinium (PE; 5 mg/kg), suggesting sympathetic mediation. Responses to L-glu were not affected by local microinjection of the selective non-NMDA receptor antagonist NBQX (2 nmol) or by local microinjection of the selective NMDA receptor antagonist LY235959 (LY; 2 nmol). However, the tachycardiac response was changed to a bradycardiac response after treatment with LY235959, suggesting that NMDA receptors are involved in the L-glu heart rate response. Local pretreatment with LY235959 associated with systemic PE or dTyr(CH(2))(5)(Me)AVP (50 mu g/kg) respectively potentiated or blocked the response to L-glu, suggesting that L-glu responses observed after LY235959 are vasopressin mediated. The increased pressor and bradycardiac responses observed after LY + PE was blocked by subsequent i.v. treatment with the V(1)-vasopressin receptor antagonist dTyr(CH(2))(5)(Me)AVP, suggesting vasopressin mediation. The pressor and bradycardiac response to L-glu microinjection into the PVN observed in animals pretreated with LY + PE was progressively inhibited and even blocked by additional pretreatment with increasing doses of NBQX (2, 10, and 20 nmol) microinjected into the PVN, suggesting its mediation by local non-NMDA receptors. In conclusion, results suggest the existence of two glutamatergic pressor pathways in the PVN: one sympathetic pathway that is mediated by NMDA receptors and a vasopressinergic pathway that is mediated by non-NMDA receptors. (C) 2009 Wiley-Liss, Inc.
Resumo:
In the present study, we investigated the role played by the hypothalamic paraventricular nucleus (PVN) in the modulation of cardiac baroreflex activity in unanesthetized rats. Bilateral microinjections of the nonselective neurotransmission blocker CoCl(2) into the PVN decreased the reflex bradycardic response evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Bilateral microinjections of the selective NMDA glutamate receptor antagonist LY235959 into the PVN caused effects that were similar to those observed after microinjections of CoCl(2), decreasing reflex bradycardia without affecting tachycardic response. The microinjection of the selective non-NMDA glutamate receptor antagonist NBQX into the PVN did not affect the baroreflex activity. Also, the microinjection of L-glutamate into the PVN increased the reflex bradycardia, an effect opposed to that observed after PVN treatment with CoCl(2) or LY235959, and this effect of L-glutamate was blocked by PVN pretreatment with LY235959. LY235959 injected into the PVN after iv. treatment with the selective beta(1)-adrenoceptor antagonist atenolol still decreased the reflex bradycardia. Taken together, our results suggest a facilitatory influence of the PVN on the bradycardic response of the baroreflex through activation of local NMDA glutamate receptors and a modulation of the cardiac parasympathetic activity. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Resumo:
arginine-vasopressin in the parvocellular neurons of the hypothalamic paraventricular nucleus is known to play an important role in the control of the hypothalamo-pituitary-adrenal axis. In the present study, we verify plasma corticosterone levels, the distribution of glucocorticoid receptor- and arginine-vasopressin-positive neurons, and the co-localization of both glucocorticoid receptors and arginine-vasopressin in neurons in the anterior and medial parvocellular subdivisions of the paraventricular nucleus after manipulations of the hypothalamus-pituitary-adrenal axis. Normal, sham surgery, and adrenalectomized male rats were subjected to intraperitoneal injections of saline or dexamethasone to measure plasma corticosterone levels by a radioimmunoassay. We also examined arginine-vasopressin and glucocorticoid receptor immunofluorescence in sections from the paraventricular nucleus. Our results showed that the immunoreactivity of arginine-vasopressin neurons increased in the anterior parvocellular subdivision and decreased in the medial parvocellular subdivision from adrenalectomized rats treated with dexamethasone. On the other hand, we showed that the immunoreactivity of glucocorticoid receptors increased in the anterior and medial parvocellular subdivisions of these same animals. However, the immunoreactivity of glucocorticoid receptors is higher in the medial parvocellular than anterior parvocellular subdivision. The co-localization of arginine-vasopressin and glucocorticoid receptors was found only in the medial parvocellular subdivision. These findings indicate that glucocorticoids have direct actions on arginine-vasopressin-positive neurons in the medial parvocellular but not anterior parvocellular subdivision. There is a differentiated pattern of arginine-vasopressin-positive neuron expression between the anterior and medial parvocellular subdivisions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The present study provides a detailed description of morphological and hodological aspects of the glomerular nucleus in the weakly electric fish Gymnotus sp., and explores the evolutionary and functional implications flowing from this analysis. The glomerular nucleus of Gymnotus shows numerous morphological similarities with the glomerular nucleus of percomorph fish, although cytoarchitectonically simpler. In addition, congruence of the histochemical acetylcholinesterase (AChE) distribution with cytoarchitectonic data suggests that the glomerular nucleus, together with the ventromedial cell group of the medial subdivision of the preglomerular complex (PGm-vmc) rostrally, and the subglomerular nucleus (as identified by Maler et al. [1991] J Chem Neuroanat 4:1-38) caudally, may form a distinct longitudinally organized glomerular complex. Our results show that an important source of sensory afferents to the glomerular nucleus originates in the pretectal and electrosensorius nuclei. The glomerular nucleus in turn projects to the hypothalamus (inferior lobe and anterior hypothalamus), to the anterior tuberal nucleus, and to the medial region of the preglomerular nucleus (PGm). These data suggest that visual and electrosensory information reach the glomerular nucleus and are relayed to the hypothalamus and, via PGm, to the pallium. Such connections are similar to those of the glomerular nucleus in percomorphs and the posterior pretectal nucleus in osteoglossomorph, esocids, and salmonids, where they comprise one component of a visual processing pathway. In Gymnotiform fish, however, the pretectal region that projects to the glomerular nucleus is dominated by electrosensory input (visual input is minor), which is consistent with the dominant role of electroreception in these fish. J. Comp. Neurol. 519:1658-1676, 2011. (c) 2011 Wiley-Liss, Inc.
Resumo:
The hypothalamus-pituitary-adrenal axis (HPA) participates in mediating the response to stressful stimuli. Within the HPA, neurons in the medial parvocellular region of paraventricular nucleus (PVN) of the hypothalamus integrate excitatory and inhibitory signals triggering secretion of corticotropin-releasing hormone (CRH), the main secretagogue of adrenocorticotropic hormone (ACTH). Stressful situations alter CRH secretion as well as other hormones, including prolactin and oxytocin. Most inputs to the PVN are of local origin, half of which are GABAergic neurons, and both GABA-A and GABA-B receptors are present in the PVN. The objective of the present study was to investigate the role of GABA-A and GABA-B receptors in the PVN`s control of stress-induced corticosterone, oxytocin and prolactin secretion. Rats Were microinjected with saline or different doses (0.5, 5 and 50 pmol) of GABA-A (bicuculine) or GABA-B (phaclofen) antagonists in the PVN. Ten minutes later, they were subjected to a stressor (ether inhalation) and blood samples were collected 30 min before and 10, 30, 60, 90 and 120 min after the stressful stimulus to measure hormone levels by radioimmunoassay. Our results indicate that GABA acts in the PVN to inhibit stress-induced corticosterone secretion via both its receptor subtypes, especially GABA-B. In contrast, GABA in the PVN stimulates oxytocin secretion through GABA-B receptors and does not alter prolactin secretion. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Microinjection of the cholinergic agonist carbachol into the bed nucleus of the stria terminalis (BST) has been reported to cause pressor response in unanesthetized rats, which was shown to be mediated by an acute release of vasopressin into the systemic circulation and followed by baroreflex-mediated bradycardia. In the present study, we tested the possible involvement of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei in the pressor response evoked by carbachol microinjection into the BST of unanesthetized rats. For this, cardiovascular responses following carbachol (1 nmol/100 nL) microinjection into the BST were studied before and after PVN or SON pretreatment, either ipsilateral or contralateral in relation to BST microinjection site, with the nonselective neurotransmission blocker cobalt chloride (CoCl(2), 1 mM/100 nL). Carbachol microinjection into the BST evoked pressor response. Moreover, BST treatment with carbachol significantly increased plasma vasopressin levels, thus confirming previous evidences that carbachol microinjection into the BST evokes pressor response due to vasopressin release into the circulation. SON pretreatment with CoCl(2), either ipsilateral or contralateral in relation to BST microinjection site, inhibited the pressor response to carbachol microinjection into the BST. However, CoCl(2) microinjection into the ipsilateral or contralateral PVN did not affect carbachol-evoked pressor response. In conclusion, our results suggest that pressor response to carbachol microinjection into the BST is mediated by SON magnocellular neurons, without significant involvement of those in the PVN. The results also indicate that responses to carbachol microinjection into the BST are mediated by a neural pathway that depends on the activation of both ipsilateral and contralateral SON. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Microinjection of noradrenaline into the bed nucleus of the stria terminalis (BST) has been reported to cause a pressor response in unanesthetized rats, which was shown to be mediated by acute vasopressin release into the systemic circulation. In the present study we verified the involvement of magnocellular neurons of the hypothalamic paraventricular (PVN) or supraoptic (SON) nuclei and the local neurotransmitter involved in the pressor response to noradrenaline microinjection into the BST. The PVN pretreatment with the non-selective neurotransmission blocker CoCl(2) (1 nmol/100 nL) inhibited the noradrenaline-evoked pressor response. However, responses were not affected by SON treatment with CoCl(2). Further experiments were carried out to test if glutamatergic neurotransmission in the PVN mediates the pressor response evoked by noradrenaline microinjection into the BST. Pretreatment of the PVN with the selective N-methyl-d-aspartate (NMDA) receptor antagonist LY235959 (2 nmol/100 nL) did not affect the noradrenaline-evoked pressor response. However, PVN pretreatment with the selective non-NMDA receptor antagonist NBQX (2 nmol/100 nL) significantly reduced the pressor response to noradrenaline microinjection into the BST. In conclusion, our results suggest that pressor responses to noradrenaline microinjection into the BST are mediated by PVN magnocellular neurons without involvement of SON neurons. They also suggest that a glutamatergic neurotransmission through non-NMDA glutamate receptors in the PVN mediates the response.
Resumo:
The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this study we provide a comprehensive analysis of the hypothalamic activation pattern during exposure to a live predator or an environment previously associated with a predator. Our results support the view that hypothalamic processing of the actual and the contextual predatory threats share the same circuit, in which the dorsal premammillary nucleus (PMd) plays a pivotal role in amplifying this processing. To further understand the role of the PMd in the circuit organizing antipredatory defensive behaviors, we studied rats with cytotoxic PMd lesions during cat exposure and examined the pattern of behavioral responses as well as how PMd lesions affect the neuronal activation of the systems engaged in predator detection, in contextual memory formation and in defensive behavioral responses. Next, we investigated how pharmacological blockade of the PMd interferes with the conditioned behavioral responses to a context previously associated with a predator, and how this blockade affects the activation pattern of periaqueductal gray (PAG) sites likely to organize the conditioned behavioral responses to the predatory context. Behavioral observations indicate that the PMd interferes with both unconditioned and conditioned antipredatory defensive behavior. Moreover, we have shown that the PMd influences the activation of its major projecting targets, i.e. the ventral part of the anteromedial thalamic nucleus which is likely to influence mnemonic processing, and PAG sites involved in the expression of antipredatory unconditioned and conditioned behavioral responses. Of particular relevance, this work provides evidence to elucidate the basic organization of the neural circuits integrating unconditioned and contextual conditioned responses to predatory threats.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)