1000 resultados para ventilatory control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study tested the use of ventilatory frequency (VF) as an indicator of stress in the Nile tilapia, Oreochromis niloticus (L.). Firstly, we tested the relationship between VF and plasma cortisol after confinement. Confined fish showed higher VF and plasma cortisol levels, but the latter continued to increase significantly for longer time than VF. Secondly, we conducted another experiment to test the use of VF as indicator of fish stress. In four out of six treatment, we confined the fish for different intervals (30 s, 5, 15 or 30 min). The others were used as control. In one, no handling was imposed. The other control consisted of introducing the partition (the same used to perform the confinement) into the aquarium for less than 4 s, without confinement and immediately removing the partition (partition control). Ventilatory frequency was increased for the partition control as much as for the longer duration of confinement. This clearly indicates that VF is a very sensitivity response to disturbance, but of limited use because this parameter does not reflect the severity of the stimulus. Thus, although VF is a non-invasive technique that does not require sophisticated recording equipment, its usefulness is limited. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study analyzed the effects of overground walking training at ventilatory threshold (VT) velocity on glycaemic control, body composition, physical fitness and lipid profile in DM2 women. Nineteen sedentary patients were randomly assigned to a control group (CG; n=10, 55.9±2.2 years) or a trained group (TG; n=9, 53.4±2.3 years). Both groups were subjected to anthropometric measures, a 12-h fasting blood sampling and a graded treadmill exercise test at baseline and after a 12-week period, during which TG followed a training program involving overground walking at VT velocity for 20-60min/session three times/week. Significant group×time interactions (P<0.05) in glycated hemoglobin (HbA1c), body mass, body mass index (BMI), peak oxygen uptake (VO 2peak) and exercise duration were observed as effects of training exercise, whereas intervention did not induced significant changes (P>0.05) in fasting blood glucose, submaximal fitness parameters and lipid profile. Our results suggest that overground walking training at VT velocity improves long term glycaemic control, body composition and exercise capacity, attesting for the relevance of this parameter as an effective strategy for the exercise intensity prescription in DM2 population. © 2011 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Central chemoreceptors are important to detect changes of CO2/H+, and the Locus coeruleus (LC) is one of the many putative central chemoreceptor sites. Here, we studied the contribution of LC glutamatergic receptors on ventilatory, cardiovascular and thermal responses to hypercapnia. Methods: To this end, we determined pulmonary ventilation (VE), body temperatures (Tb), mean arterial pressure (MAP) and heart rate (HR) of male Wistar rats before and after unilateral microinjection of kynurenic acid (KY, an ionotropic glutamate receptor antagonist, 10 nmol/0.1 μL) or α-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamate receptor antagonist, 10 nmol/0.1 μL) into the LC, followed by 60 min of air breathing or hypercapnia exposure (7% CO2). Results: Ventilatory response to hypercapnia was higher in animals treated with KY intra-LC (1918.7 ± 275.4) compared with the control group (1057.8 ± 213.9, P < 0.01). However, the MCPG treatment within the LC had no effect on the hypercapnia-induced hyperpnea. The cardiovascular and thermal controls were not affected by hypercapnia or by the injection of KY and MCPG in the LC. Conclusion: These data suggest that glutamate acting on ionotropic, but not metabotropic, receptors in the LC exerts an inhibitory modulation of hypercapnia-induced hyperpnea. © 2013 Scandinavian Physiological Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The medullary raphé is an important component of the central respiratory network, playing a key role in CO2 central chemoreception. However, its participation in hypoxic ventilatory responses is less understood. In the present study, we assessed the role of nucleus raphé obscurus (ROb), and specifically 5-HT neurons confined in the ROb, on ventilatory and thermoregulatory responses to hypoxia. Chemical lesions of the ROb were performed using either ibotenic acid (non-specific lesion; control animals received PBS) or anti-SERT-SAP (5-HT specific lesion; control animals received IgG-SAP). Ventilation (VE; whole body plethysmograph) and body temperature (Tb; data loggers) were measured during normoxia (21% O2, N2 balance) and hypoxia exposure (7% O2, N2 balance, 1h) in conscious adult rats. Ibotenic acid or anti-SERT-SAP-induced lesions did not affect baseline values of VE and Tb. Similarly, both lesion procedures did not alter the ventilatory or thermoregulatory responses to hypoxia. Although evidence in the literature suggests a role of the rostral medullary raphé in hypoxic ventilatory responses, under the present experimental conditions our data indicate that caudal medullary raphé (ROb) and its 5-HT neurons neither participate in the tonic maintenance of breathing nor in the ventilatory and thermal responses to hypoxia. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent reports have suggested that orexins, also known as hypocretins, play an important role in the modulation of respiratory control in mammals, but there are no data available describing the role of the orexinergic system in the peripheral and central chemoreception of non-mammalian vertebrates. Therefore, the present study was designed to examine the localization of orexin-immunoreactive neurons in the brain of toads (Rhinella schneideri) and to investigate the contribution of orexin receptor-1 (OX1R) to the hypoxic and hypercarbic ventilatory responses of these animals during light and dark phases. Our results demonstrated that the orexinergic neurons of R. schneideri are located in the suprachiasmatic nucleus of the diencephalon. Additionally, the intracerebroventricular injection of SB-334867 (OX1R selective antagonist) attenuated the ventilatory response to hypercarbia during the dark phase by acting on tidal volume and breathing frequency, while during the light phase, SB-334867 attenuated the ventilatory response to hypoxia by acting on tidal volume only. We conclude that in the toad R. schneideri, orexinergic neurons are located in the suprachiasmatic nucleus and that OX1R contributes to hypercarbic and hypoxic chemoreflexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In female rats, a single injection of estradiol valerate (EV) results in effects that are similar to those observed in women with polycystic ovary syndrome (PCOS). We hypothesized that EV-induced PCOS affects breathing control based on evidence showing an influence of sex hormones on ventilation. To test this hypothesis, we studied the effects of EV treatment on the ventilation of female rats in air, in 7% CO2 and in 7% O2, at 30, 45 and 60 days after EV injection. The group examined 30 days after EV treatment showed a 61% reduction in the hypercapnic ventilatory response compared to the control group. Basal ventilation, hypoxic ventilatory response, and body temperature were not affected. These results, suggest that the hormonal changes observed in PCOS may result in a temporary inhibition of the central chemoreflex but do not influence basal ventilation or the hypoxic peripheral chemoreflex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The periaqueductal gray (PAG) is a midbrain structure directly involved in the modulation of defensive behaviors. It has direct projections to several central nuclei that are involved in cardiorespiratory control. Although PAG stimulation is known to elicit respiratory responses, the role of the PAG in the CO2-drive to breathe is still unknown. The present study assessed the effect of chemical lesion of the dorsolateral and dorsomedial and ventrolateral/lateral PAG (dlPAG, dmPAG, and vPAG, respectively) on cardiorespiratory and thermal responses to hypercapnia. Ibotenic acid (IBO) or vehicle (PBS, Sham group) was injected into the dlPAG, dmPAG, or vPAG of male Wistar rats. Rats with lesions outside the dlPAG, dmPAG, or vPAG were considered as negative controls (NC). Pulmonary ventilation (Ve), mean arterial pressure (MAP), heart rate (HR), and body temperature (Tb) were measured in unanesthetized rats during normocapnia and hypercapnic exposure (5, 15, 30 min, 7 % CO2). IBO lesioning of the dlPAG/dmPAG caused 31 % and 26.5 % reductions of the respiratory response to CO2 (1,094.3 +/- 115 mL/kg/min) compared with Sham (1,589.5 +/- 88.1 mL/kg/min) and NC groups (1,488.2 +/- 47.7 mL/kg/min), respectively. IBO lesioning of the vPAG caused 26.6 % and 21 % reductions of CO2 hyperpnea (1,215.3 +/- 108.6 mL/kg/min) compared with Sham (1,657.3 +/- 173.9 mL/kg/min) and NC groups (1,537.6 +/- 59.3). Basal Ve, MAP, HR, and Tb were not affected by dlPAG, dmPAG, or vPAG lesioning. The results suggest that dlPAG, dmPAG, and vPAG modulate hypercapnic ventilatory responses in rats but do not affect MAP, HR, or Tb regulation in resting conditions or during hypercapnia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The medullary raphe (MR) is a putative central chemoreceptor site, contributing to hypercapnic respiratory responses elicited by changes in brain PCO2/pH. Purinergic mechanisms in the central nervous system appear to contribute to central chemosensitivity. To further explore the role of P2 receptors within the rostral and caudal MR in relation to respiratory control in room air and hypercapnic conditions, we performed microinjections of PPADS, a non-selective P2X antagonist, in conscious rats. Microinjections of PPADS into the rostral or caudal MR produced no changes in the respiratory frequency, tidal volume and ventilation in room air condition. The ventilatory response to hypercapnia was attenuated after microinjection of PPADS into the rostral but not in the caudal MR when compared to the control group (vehicle microinjection). These data suggest that P2X receptors in the rostral MR contribute to the ventilatory response to CO2, but do not participate in the tonic maintenance of ventilation under room air condition in conscious rats. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ventilation rate (VR) of an ostariophysan fish, the speckled catfish Pseudoplaty - stoma coruscans, exposed to a chemical alarm cue was measured in the present study in multiple contexts. The influence of the extraction techniques, skin donor food intake and quantity of the alarm cue (skin extract) on this autonomic response was considered. Overall, the catfish VR decreased significantly when exposed to the skin extract (chemical alarm cue) compared with exposure to distilled water (control). No effect of the extraction technique was found. Increasing doses of the skin extract induced a VR reduction of similar magnitude. However, extract obtained from daily-fed fish induced a significant decrease in the VR, whereas extract obtained from foodrestricted fish did not induce any change in the VR. Thus, food intake was associated with the production of a more easily recognizable alarm cue in the speckled catfish. Interestingly, this effect was not related to differences in the number of club cells in the donor catfish epidermis. Dashing, or rapid swimming, a normal component of the alarm response in fish, including this catfish species, was not observed here, and hypoventilation was always associated with no swimming reaction. Together, these results suggest that hypoventilation is a reaction to a chemical alarm cue, likely resulting in improved crypsis, causing the fish to become less easily perceived by a potential predator that usually strikes prey in response to movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diaphragmatic electrical activity (EA(di)), reflecting respiratory drive, and its feedback control might be impaired in critical illness-associated polyneuromyopathy (CIPM). We aimed to evaluate whether titration and prolonged application of neurally adjusted ventilatory assist (NAVA), which delivers pressure (P (aw)) in proportion to EA(di), is feasible in CIPM patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Neurally adjusted ventilatory assist uses the electrical activity of the diaphragm (EAdi)-a pneumatically-independent signal-to control the timing and pressure of the ventilation delivered, and should not be affected by leaks. The aim of this study was to evaluate whether NAVA can deliver assist in synchrony and proportionally to EAdi after extubation, with a leaky non-invasive interface. DESIGN AND SETTING: Prospective, controlled experimental study in an animal laboratory. ANIMALS: Ten rabbits, anesthetized, mechanically ventilated. INTERVENTIONS: Following lung injury, the following was performed in sequential order: (1) NAVA delivered via oral endotracheal tube with PEEP; (2) same as (1) without PEEP; (3) non-invasive NAVA at unchanged NAVA level and no PEEP via a single nasal prong; (4) no assist; (5) non-invasive NAVA at progressively increasing NAVA levels. MEASUREMENTS AND RESULTS: EAdi, esophageal pressure, blood gases and hemodynamics were measured during each condition. For the same NAVA level, the mean delivered pressure above PEEP increased from 3.9[Symbol: see text]+/-[Symbol: see text]1.4[Symbol: see text]cmH(2)O (intubated) to 7.5[Symbol: see text]+/-[Symbol: see text]3.8[Symbol: see text]cmH(2)O (non-invasive) (p[Symbol: see text]<[Symbol: see text]0.05) because of increased EAdi. No changes were observed in PaO(2) and PaCO(2). Increasing the NAVA level fourfold during non-invasive NAVA restored EAdi and esophageal pressure swings to pre-extubation levels. Triggering (106[Symbol: see text]+/-[Symbol: see text]20[Symbol: see text]ms) and cycling-off delays (40[Symbol: see text]+/-[Symbol: see text]21[Symbol: see text]ms) during intubation were minimal and not worsened by the leak (95[Symbol: see text]+/-[Symbol: see text]13[Symbol: see text]ms and 33[Symbol: see text]+/-[Symbol: see text]9[Symbol: see text]ms, respectively). CONCLUSION: NAVA can be effective in delivering non-invasive ventilation even when the interface with the patient is excessively leaky, and can unload the respiratory muscles while maintaining synchrony with the subject's demand.