994 resultados para vector processing
Resumo:
The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
Background: Identifying biological markers to aid diagnosis of bipolar disorder (BD) is critically important. To be considered a possible biological marker, neural patterns in BD should be discriminant from those in healthy individuals (HI). We examined patterns of neuromagnetic responses revealed by magnetoencephalography (MEG) during implicit emotion-processing using emotional (happy, fearful, sad) and neutral facial expressions, in sixteen BD and sixteen age- and gender-matched healthy individuals. Methods: Neuromagnetic data were recorded using a 306-channel whole-head MEG ELEKTA Neuromag System, and preprocessed using Signal Space Separation as implemented in MaxFilter (ELEKTA). Custom Matlab programs removed EOG and ECG signals from filtered MEG data, and computed means of epoched data (0-250ms, 250-500ms, 500-750ms). A generalized linear model with three factors (individual, emotion intensity and time) compared BD and HI. A principal component analysis of normalized mean channel data in selected brain regions identified principal components that explained 95% of data variation. These components were used in a quadratic support vector machine (SVM) pattern classifier. SVM classifier performance was assessed using the leave-one-out approach. Results: BD and HI showed significantly different patterns of activation for 0-250ms within both left occipital and temporal regions, specifically for neutral facial expressions. PCA analysis revealed significant differences between BD and HI for mild fearful, happy, and sad facial expressions within 250-500ms. SVM quadratic classifier showed greatest accuracy (84%) and sensitivity (92%) for neutral faces, in left occipital regions within 500-750ms. Conclusions: MEG responses may be used in the search for disease specific neural markers.
Resumo:
Coherent vector beams with involved states of polarization (SOP) are widespread in the literature, having applications in laser processing, super-resolution imaging and particle trapping. We report novel vector beams obtained by transforming a Gaussian beam passing through a biaxial crystal, by means of the conical refraction phenomenon. We analyze both experimentally and theoretically the SOP of the different vector beams generated and demonstrate that the SOP of the input beam can be used to control both the shape and the SOP of the transformed beam. We also identify polarization singularities of such beams for the first time and demonstrate their control by the SOP of the input beam.
Resumo:
Although aspects of power generation of many offshore renewable devices are well understood, their dynamic responses under high wind and wave conditions are still to be investigated to a great detail. Output only statistical markers are important for these offshore devices, since access to the device is limited and information about the exposure conditions and the true behaviour of the devices are generally partial, limited, and vague or even absent. The markers can summarise and characterise the behaviour of these devices from their dynamic response available as time series data. The behaviour may be linear or nonlinear and consequently a marker that can track the changes in structural situations can be quite important. These markers can then be helpful in assessing the current condition of the structure and can indicate possible intervention, monitoring or assessment. This paper considers a Delay Vector Variance based marker for changes in a tension leg platform tested in an ocean wave basin for structural changes brought about by single column dampers. The approach is based on dynamic outputs of the device alone and is based on the estimation of the nonlinearity of the output signal. The advantages of the selected marker and its response with changing structural properties are discussed. The marker is observed to be important for monitoring the as- deployed structural condition and is sensitive to changes in such conditions. Influence of exposure conditions of wave loading is also discussed in this study based only on experimental data.
Resumo:
Common computational principles underlie processing of various visual features in the cortex. They are considered to create similar patterns of contextual modulations in behavioral studies for different features as orientation and direction of motion. Here, I studied the possibility that a single theoretical framework, implemented in different visual areas, of circular feature coding and processing could explain these similarities in observations. Stimuli were created that allowed direct comparison of the contextual effects on orientation and motion direction with two different psychophysical probes: changes in weak and strong signal perception. One unique simplified theoretical model of circular feature coding including only inhibitory interactions, and decoding through standard vector average, successfully predicted the similarities in the two domains, while different feature population characteristics explained well the differences in modulation on both experimental probes. These results demonstrate how a single computational principle underlies processing of various features across the cortices.
Resumo:
In the near future, the LHC experiments will continue to be upgraded as the LHC luminosity will increase from the design 1034 to 7.5 × 1034, with the HL-LHC project, to reach 3000 × f b−1 of accumulated statistics. After the end of a period of data collection, CERN will face a long shutdown to improve overall performance by upgrading the experiments and implementing more advanced technologies and infrastructures. In particular, ATLAS will upgrade parts of the detector, the trigger, and the data acquisition system. It will also implement new strategies and algorithms for processing and transferring the data to the final storage. This PhD thesis presents a study of a new pattern recognition algorithm to be used in the trigger system, which is a software designed to provide the information necessary to select physical events from background data. The idea is to use the well-known Hough Transform mathematical formula as an algorithm for detecting particle trajectories. The effectiveness of the algorithm has already been validated in the past, independently of particle physics applications, to detect generic shapes in images. Here, a software emulation tool is proposed for the hardware implementation of the Hough Transform, to reconstruct the tracks in the ATLAS Trigger and Data Acquisition system. Until now, it has never been implemented on electronics in particle physics experiments, and as a hardware implementation it would provide overall latency benefits. A comparison between the simulated data and the physical system was performed on a Xilinx UltraScale+ FPGA device.
Resumo:
In questo elaborato vengono analizzate differenti tecniche per la detection di jammer attivi e costanti in una comunicazione satellitare in uplink. Osservando un numero limitato di campioni ricevuti si vuole identificare la presenza di un jammer. A tal fine sono stati implementati i seguenti classificatori binari: support vector machine (SVM), multilayer perceptron (MLP), spectrum guarding e autoencoder. Questi algoritmi di apprendimento automatico dipendono dalle features che ricevono in ingresso, per questo motivo è stata posta particolare attenzione alla loro scelta. A tal fine, sono state confrontate le accuratezze ottenute dai detector addestrati utilizzando differenti tipologie di informazione come: i segnali grezzi nel tempo, le statistical features, le trasformate wavelet e lo spettro ciclico. I pattern prodotti dall’estrazione di queste features dai segnali satellitari possono avere dimensioni elevate, quindi, prima della detection, vengono utilizzati i seguenti algoritmi per la riduzione della dimensionalità: principal component analysis (PCA) e linear discriminant analysis (LDA). Lo scopo di tale processo non è quello di eliminare le features meno rilevanti, ma combinarle in modo da preservare al massimo l’informazione, evitando problemi di overfitting e underfitting. Le simulazioni numeriche effettuate hanno evidenziato come lo spettro ciclico sia in grado di fornire le features migliori per la detection producendo però pattern di dimensioni elevate, per questo motivo è stato necessario l’utilizzo di algoritmi di riduzione della dimensionalità. In particolare, l'algoritmo PCA è stato in grado di estrarre delle informazioni migliori rispetto a LDA, le cui accuratezze risentivano troppo del tipo di jammer utilizzato nella fase di addestramento. Infine, l’algoritmo che ha fornito le prestazioni migliori è stato il Multilayer Perceptron che ha richiesto tempi di addestramento contenuti e dei valori di accuratezza elevati.
Resumo:
Hand gesture recognition based on surface electromyography (sEMG) signals is a promising approach for the development of intuitive human-machine interfaces (HMIs) in domains such as robotics and prosthetics. The sEMG signal arises from the muscles' electrical activity, and can thus be used to recognize hand gestures. The decoding from sEMG signals to actual control signals is non-trivial; typically, control systems map sEMG patterns into a set of gestures using machine learning, failing to incorporate any physiological insight. This master thesis aims at developing a bio-inspired hand gesture recognition system based on neuromuscular spike extraction rather than on simple pattern recognition. The system relies on a decomposition algorithm based on independent component analysis (ICA) that decomposes the sEMG signal into its constituent motor unit spike trains, which are then forwarded to a machine learning classifier. Since ICA does not guarantee a consistent motor unit ordering across different sessions, 3 approaches are proposed: 2 ordering criteria based on firing rate and negative entropy, and a re-calibration approach that allows the decomposition model to retain information about previous sessions. Using a multilayer perceptron (MLP), the latter approach results in an accuracy up to 99.4% in a 1-subject, 1-degree of freedom scenario. Afterwards, the decomposition and classification pipeline for inference is parallelized and profiled on the PULP platform, achieving a latency < 50 ms and an energy consumption < 1 mJ. Both the classification models tested (a support vector machine and a lightweight MLP) yielded an accuracy > 92% in a 1-subject, 5-classes (4 gestures and rest) scenario. These results prove that the proposed system is suitable for real-time execution on embedded platforms and also capable of matching the accuracy of state-of-the-art approaches, while also giving some physiological insight on the neuromuscular spikes underlying the sEMG.
Resumo:
The aim of this study was to evaluate fat substitute in processing of sausages prepared with surimi of waste from piramutaba filleting. The formulation ingredients were mixed with the fat substitutes added according to a fractional planning 2(4-1), where the independent variables, manioc starch (Ms), hydrogenated soy fat (F), texturized soybean protein (Tsp) and carrageenan (Cg) were evaluated on the responses of pH, texture (Tx), raw batter stability (RBS) and water holding capacity (WHC) of the sausage. Fat substitutes were evaluated in 11 formulations and the results showed that the greatest effects on the responses were found to Ms, F and Cg, being eliminated from the formulation Tsp. To find the best formulation for processing piramutaba sausage was made a complete factorial planning of 2(3) to evaluate the concentrations of fat substitutes in an enlarged range. The optimum condition found for fat substitutes in the sausages formulation were carrageenan (0.51%), manioc starch (1.45%) and fat (1.2%).
Resumo:
To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. 23 children (13 male) between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure); dichotic digit test and staggered spondaic word test (selective attention); pitch pattern and duration pattern sequence tests (temporal processing) and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.
Resumo:
The aim of the present work was to produce a cationic solid lipid nanoparticle (SLN) as non-viral vector for protein delivery. Cationic SLN were produced by double emulsion method, composed of softisan(®) 100, cetyltrimethylammonium bromide (CTAB), Tween(®) 80, Span(®) 80, glycerol and lipoid(®) S75 loading insulin as model protein. The formulation was characterized in terms of mean hydrodynamic diameter (z-ave), polydispersity index (PI), zeta potential (ZP), stability during storage time, stability after lyophilization, effect of toxicity and transfection ability in HeLa cells, in vitro release profile and morphology. SLN were stable for 30days and showed minimal changes in their physicochemical properties after lyophilization. The particles exhibited a relatively slow release, spherical morphology and were able to transfect HeLa cells, but toxicity remained an obstacle. Results suggest that SLN are nevertheless promising for delivery of proteins or nucleic acids for gene therapy.
Resumo:
The aim of this research was to analyze temporal auditory processing and phonological awareness in school-age children with benign childhood epilepsy with centrotemporal spikes (BECTS). Patient group (GI) consisted of 13 children diagnosed with BECTS. Control group (GII) consisted of 17 healthy children. After neurological and peripheral audiological assessment, children underwent a behavioral auditory evaluation and phonological awareness assessment. The procedures applied were: Gaps-in-Noise test (GIN), Duration Pattern test, and Phonological Awareness test (PCF). Results were compared between the groups and a correlation analysis was performed between temporal tasks and phonological awareness performance. GII performed significantly better than the children with BECTS (GI) in both GIN and Duration Pattern test (P < 0.001). GI performed significantly worse in all of the 4 categories of phonological awareness assessed: syllabic (P = 0.001), phonemic (P = 0.006), rhyme (P = 0.015) and alliteration (P = 0.010). Statistical analysis showed a significant positive correlation between the phonological awareness assessment and Duration Pattern test (P < 0.001). From the analysis of the results, it was concluded that children with BECTS may have difficulties in temporal resolution, temporal ordering, and phonological awareness skills. A correlation was observed between auditory temporal processing and phonological awareness in the suited sample.
Resumo:
The biofilm formation of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta on stainless steel coupons was evaluated, and the effect of cleaning and sanitization procedures in the control of these biofilms was determined. The formation of biofilms was observed while varying the incubation temperature (7, 25 and 39°C) and time (0, 1, 2, 4, 6 and 8days). At 7°C, the counts of E. faecalis and E. faecium were below 2log10CFU/cm(2). For the temperatures of 25 and 39°C, after 1day, the counts of E. faecalis and E. faecium were 5.75 and 6.07log10CFU/cm(2), respectively, which is characteristic of biofilm formation. The tested sanitation procedures a) acid-anionic tensioactive cleaning, b) anionic tensioactive cleaning+sanitizer and c) acid-anionic tensioactive cleaning+sanitizer were effective in removing the biofilms, reducing the counts to levels below 0.4log10CFU/cm(2). The sanitizer biguanide was the least effective, and peracetic acid was the most effective. These studies revealed the ability of enterococci to form biofilms and the importance of the cleaning step and the type of sanitizer used in sanitation processes for the effective removal of biofilms.