995 resultados para vector flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the 'negative' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector nonlinear Schrodinger equations appear as lowest-negative and second-positive flows within the extended hierarchy. This is fully analogous to the well known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the 'negative' sector of the sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N) loop algebra is indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a "boundary version" for theorems about minimality of volume and energy functionals on a spherical domain of an odd-dimensional Euclidean sphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Gene therapy in the hematopoietic system remains promising, though certain aspects of vector design, such as transcriptional control elements, continue to be studied. Our group has developed a retroviral vector where transgene expression is controlled by p53 with the intention of harnessing the dynamic and inducible nature of this tumor suppressor and transcription factor. We present here a test of in vivo expression provided by the p53-responsive vector, pCLPG. For this, we used a model of serial transplantation of transduced bone marrow cells. Results We observed, by flow cytometry, that the eGFP transgene was expressed at higher levels when the pCLPG vector was used as compared to the parental pCL retrovirus, where expression is directed by the native MoMLV LTR. Expression from the pCLPG vector was longer lasting, but did decay along with each sequential transplant. The detection of eGFP-positive cells containing either vector was successful only in the bone marrow compartment and was not observed in peripheral blood, spleen or thymus. Conclusions These findings indicate that the p53-responsive pCLPG retrovirus did offer expression in vivo and at a level that surpassed the non-modified, parental pCL vector. Our results indicate that the pCLPG platform may provide some advantages when applied in the hematopoietic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than the number of genes, making it possible to naturally infer partial Granger causalities without any a priori information. In addition, we present a statistical test to control the false discovery rate, which was not previously possible using other gene regulatory network models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] The seminal work of Horn and Schunck [8] is the first variational method for optical flow estimation. It introduced a novel framework where the optical flow is computed as the solution of a minimization problem. From the assumption that pixel intensities do not change over time, the optical flow constraint equation is derived. This equation relates the optical flow with the derivatives of the image. There are infinitely many vector fields that satisfy the optical flow constraint, thus the problem is ill-posed. To overcome this problem, Horn and Schunck introduced an additional regularity condition that restricts the possible solutions. Their method minimizes both the optical flow constraint and the magnitude of the variations of the flow field, producing smooth vector fields. One of the limitations of this method is that, typically, it can only estimate small motions. In the presence of large displacements, this method fails when the gradient of the image is not smooth enough. In this work, we describe an implementation of the original Horn and Schunck method and also introduce a multi-scale strategy in order to deal with larger displacements. For this multi-scale strategy, we create a pyramidal structure of downsampled images and change the optical flow constraint equation with a nonlinear formulation. In order to tackle this nonlinear formula, we linearize it and solve the method iteratively in each scale. In this sense, there are two common approaches: one that computes the motion increment in the iterations, like in ; or the one we follow, that computes the full flow during the iterations, like in. The solutions are incrementally refined ower the scales. This pyramidal structure is a standard tool in many optical flow methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] We present in this paper a variational approach to accurately estimate simultaneously the velocity field and its derivatives directly from PIV image sequences. Our method differs from other techniques that have been presented in the literature in the fact that the energy minimization used to estimate the particles motion depends on a second order Taylor development of the flow. In this way, we are not only able to compute the motion vector field, but we also obtain an accurate estimation of their derivatives. Hence, we avoid the use of numerical schemes to compute the derivatives from the estimated flow that usually yield to numerical amplification of the inherent uncertainty on the estimated flow. The performance of our approach is illustrated with the estimation of the motion vector field and the vorticity on both synthetic and real PIV datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanotechnologies are rapidly expanding because of the opportunities that the new materials offer in many areas such as the manufacturing industry, food production, processing and preservation, and in the pharmaceutical and cosmetic industry. Size distribution of the nanoparticles determines their properties and is a fundamental parameter that needs to be monitored from the small-scale synthesis up to the bulk production and quality control of nanotech products on the market. A consequence of the increasing number of applications of nanomaterial is that the EU regulatory authorities are introducing the obligation for companies that make use of nanomaterials to acquire analytical platforms for the assessment of the size parameters of the nanomaterials. In this work, Asymmetrical Flow Field-Flow Fractionation (AF4) and Hollow Fiber F4 (HF5), hyphenated with Multiangle Light Scattering (MALS) are presented as tools for a deep functional characterization of nanoparticles. In particular, it is demonstrated the applicability of AF4-MALS for the characterization of liposomes in a wide series of mediums. Afterwards the technique is used to explore the functional features of a liposomal drug vector in terms of its biological and physical interaction with blood serum components: a comprehensive approach to understand the behavior of lipid vesicles in terms of drug release and fusion/interaction with other biological species is described, together with weaknesses and strength of the method. Afterwards the size characterization, size stability, and conjugation of azidothymidine drug molecules with a new generation of metastable drug vectors, the Metal Organic Frameworks, is discussed. Lastly, it is shown the applicability of HF5-ICP-MS for the rapid screening of samples of relevant nanorisk: rather than a deep and comprehensive characterization it this time shown a quick and smart methodology that within few steps provides qualitative information on the content of metallic nanoparticles in tattoo ink samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quark-gluon plasma formed in heavy ion collisions contains charged chiral fermions evolving in an external magnetic field. At finite density of electric charge or baryon number (resulting either from nuclear stopping or from fluctuations), the triangle anomaly induces in the plasma the Chiral Magnetic Wave (CMW). The CMW first induces a separation of the right and left chiral charges along the magnetic field; the resulting dipolar axial charge density in turn induces the oppositely directed vector charge currents leading to an electric quadrupole moment of the quark-gluon plasma. Boosted by the strong collective flow, the electric quadrupole moment translates into the charge dependence of the elliptic flow coefficients, so that $v_2(\pi^+) < v_2(\pi^-)$ (at positive net charge). Using the latest quantitative simulations of the produced magnetic field and solving the CMW equation, we make further quantitative estimates of the produced $v_2$ splitting and its centrality dependence. We compare the results with the available experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distributions of event-by-event harmonic flow coefficients v_n for n=2-4 are measured in sqrt(s_NN)=2.76 TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT> 0.5 GeV and in the pseudorapidity range |eta|<2.5 in a dataset of approximately 7 ub^-1 recorded in 2010. The shapes of the v_n distributions are described by a two-dimensional Gaussian function for the underlying flow vector in central collisions for v_2 and over most of the measured centrality range for v_3 and v_4. Significant deviations from this function are observed for v_2 in mid-central and peripheral collisions, and a small deviation is observed for v_3 in mid-central collisions. It is shown that the commonly used multi-particle cumulants are insensitive to the deviations for v_2. The v_n distributions are also measured independently for charged particles with 0.51 GeV. When these distributions are rescaled to the same mean values, the adjusted shapes are found to be nearly the same for these two pT ranges. The v_n distributions are compared with the eccentricity distributions from two models for the initial collision geometry: a Glauber model and a model that includes corrections to the initial geometry due to gluon saturation effects. Both models fail to describe the experimental data consistently over most of the measured centrality range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Interstellar Boundary Explorer (IBEX) has observed the interstellar neutral (ISN) gas flow over the past 6 yr during winter/spring when the Earth's motion opposes the ISN flow. Since IBEX observes the interstellar atom trajectories near their perihelion, we can use an analytical model based upon orbital mechanics to determine the interstellar parameters. Interstellar flow latitude, velocity, and temperature are coupled to the flow longitude and are restricted by the IBEX observations to a narrow tube in this parameter space. In our original analysis we found that pointing the spacecraft spin axis slightly out of the ecliptic plane significantly influences the ISN flow vector determination. Introducing the spacecraft spin axis tilt into the analytical model has shown that IBEX observations with various spin axis tilt orientations can substantially reduce the range of acceptable solutions to the ISN flow parameters as a function of flow longitude. The IBEX operations team pointed the IBEX spin axis almost exactly within the ecliptic plane during the 2012-2014 seasons, and about 5° below the ecliptic for half of the 2014 season. In its current implementation the analytical model describes the ISN flow most precisely for the spin axis orientation exactly in the ecliptic. This analysis refines the derived ISN flow parameters with a possible reconciliation between velocity vectors found with IBEX and Ulysses, resulting in a flow longitude lambda∞ = 74.°5 ± 1.°7 and latitude beta∞ = -5.°2 ± 0.°3, but at a substantially higher ISN temperature than previously reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Interstellar Boundary Explorer (IBEX) samples the interstellar neutral (ISN) gas flow of several species every year from December through late March when the Earth moves into the incoming flow. The first quantitative analyses of these data resulted in a narrow tube in four-dimensional interstellar parameter space, which couples speed, flow latitude, flow longitude, and temperature, and center values with approximately 3° larger longitude and 3 km s⁻¹ lower speed, but with temperatures similar to those obtained from observations by the Ulysses spacecraft. IBEX has now recorded six years of ISN flow observations, providing a large database over increasing solar activity and using varying viewing strategies. In this paper, we evaluate systematic effects that are important for the ISN flow vector and temperature determination. We find that all models in use return ISN parameters well within the observational uncertainties and that the derived ISN flow direction is resilient against uncertainties in the ionization rate. We establish observationally an effective IBEX-Lo pointing uncertainty of ±0°18 in spin angle and confirm an uncertainty of ±0°1 in longitude. We also show that the IBEX viewing strategy with different spin-axis orientations minimizes the impact of several systematic uncertainties, and thus improves the robustness of the measurement. The Helium Warm Breeze has likely contributed substantially to the somewhat different center values of the ISN flow vector. By separating the flow vector and temperature determination, we can mitigate these effects on the analysis, which returns an ISN flow vector very close to the Ulysses results, but with a substantially higher temperature. Due to coupling with the ISN flow speed along the ISN parameter tube, we provide the temperature Tvisn∞=8710+440/-680 K for Visn∞=26 km s⁻¹ for comparison, where most of the uncertainty is systematic and likely due to the presence of the Warm Breeze.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on our needs, that is to say, through precise simulation of the impact phenomena that may occur inside a jet engine turbine with an explicit non-linear finite element code, four new material models are postulated. Each one of is calibrated for four high-performance alloys that can be encountered in a modern jet engine. A new uncoupled material model for high strain and ballistic is proposed. Based on a Johnson-Cook type model, the proposed formulation introduces the effect of the third deviatoric invariant by means of three different Lode angle dependent functions. The Lode dependent functions are added to both plasticity and failure models. The postulated model is calibrated for a 6061-T651 aluminium alloy with data taken from the literature. The fracture pattern predictability of the JCX material model is shown performing numerical simulations of various quasi-static and dynamic tests. As an extension of the above-mentioned model, a modification in the thermal softening behaviour due to phase transformation temperatures is developed (JCXt). Additionally, a Lode angle dependent flow stress is defined. Analysing the phase diagram and high temperature tests performed, phase transformation temperatures of the FV535 stainless steel are determined. The postulated material model constants for the FV535 stainless steel are calibrated. A coupled elastoplastic-damage material model for high strain and ballistic applications is presented (JCXd). A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson-Cook failure criterion. The weakening in the elastic law and in the Johnson-Cook type constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. A transversely isotropic material model for directionally solidified alloys is presented. The proposed yield function is based a single linear transformation of the stress tensor. The linear operator weighs the degree of anisotropy of the yield function. The elastic behaviour, as well as the hardening, are considered isotropic. To model the hardening, a Johnson-Cook type relation is adopted. A material vector is included in the model implementation. The failure is modelled with the Cockroft-Latham failure criterion. The material vector allows orienting the reference orientation in any other that the user may need. The model is calibrated for the MAR-M 247 directionally solidified nickel-base superalloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We reexamine the Gouy phase in ballistic Airy beams (AiBs). A physical interpretation of our analysis is derived in terms of the local phase velocity and the Poynting vector streamlines. Recent experiments employing AiBs are consistent with our results. We provide an approach which potentially applies to any finite-energy paraxial wave field that lacks a beam axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel class of nonlinear, visco-elastic rheologies has recently been developed by MUHLHAUS et al. (2002a, b). The theory was originally developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock. The orientation of the layer surfaces or slip planes in the context of crystallographic slip is determined by the normal vector the so-called director of these surfaces. Here the model (MUHLHAUS et al., 2002a, b) is generalized to include thermal effects; it is shown that in 2-D steady states the director is given by the gradient of the flow potential. The model is applied to anisotropic simple shear where the directors are initially parallel to the shear direction. The relative effects of textural hardening and thermal softening are demonstrated. We then turn to natural convection and compare the time evolution and approximately steady states of isotropic and anisotropic convection for a Rayleigh number Ra=5.64x10(5) for aspect ratios of the experimental domain of 1 and 2, respectively. The isotropic case has a simple steady-state solution, whereas in the orthotropic convection model patterns evolve continuously in the core of the convection cell, which makes only a near-steady condition possible. This near-steady state condition shows well aligned boundary layers, and the number of convection cells which develop appears to be reduced in the orthotropic case. At the moderate Rayleigh numbers explored here we found only minor influences in the change from aspect ratio one to two in the model domain.