991 resultados para vector auto regression
Resumo:
A novel versatile digital signal processing (DSP)-based equalizer using support vector machine regression (SVR) is proposed for 16-quadrature amplitude modulated (16-QAM) coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and experimentally compared to traditional DSP-based deterministic fiber-induced nonlinearity equalizers (NLEs), namely the full-field digital back-propagation (DBP) and the inverse Volterra series transfer function-based NLE (V-NLE). For a 40 Gb/s 16-QAM CO-OFDM at 2000 km, SVR-NLE extends the optimum launched optical power (LOP) by 4 dB compared to V-NLE by means of reduction of fiber nonlinearity. In comparison to full-field DBP at a LOP of 6 dBm, SVR-NLE outperforms by ∼1 dB in Q-factor. In addition, SVR-NLE is the most computational efficient DSP-NLE.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. The paper considers a data driven approach in modelling uncertainty in spatial predictions. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic features and describe stochastic variability and non-uniqueness of spatial properties. It is able to capture and preserve key spatial dependencies such as connectivity, which is often difficult to achieve with two-point geostatistical models. Semi-supervised SVR is designed to integrate various kinds of conditioning data and learn dependences from them. A stochastic semi-supervised SVR model is integrated into a Bayesian framework to quantify uncertainty with multiple models fitted to dynamic observations. The developed approach is illustrated with a reservoir case study. The resulting probabilistic production forecasts are described by uncertainty envelopes.
Resumo:
Fluvial deposits are a challenge for modelling flow in sub-surface reservoirs. Connectivity and continuity of permeable bodies have a major impact on fluid flow in porous media. Contemporary object-based and multipoint statistics methods face a problem of robust representation of connected structures. An alternative approach to model petrophysical properties is based on machine learning algorithm ? Support Vector Regression (SVR). Semi-supervised SVR is able to establish spatial connectivity taking into account the prior knowledge on natural similarities. SVR as a learning algorithm is robust to noise and captures dependencies from all available data. Semi-supervised SVR applied to a synthetic fluvial reservoir demonstrated robust results, which are well matched to the flow performance
Resumo:
This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computationally efficient than training a single SVR model while reducing error. Boosting, however, does not improve results on this specific problem.
Resumo:
We study the relation between support vector machines (SVMs) for regression (SVMR) and SVM for classification (SVMC). We show that for a given SVMC solution there exists a SVMR solution which is equivalent for a certain choice of the parameters. In particular our result is that for $epsilon$ sufficiently close to one, the optimal hyperplane and threshold for the SVMC problem with regularization parameter C_c are equal to (1-epsilon)^{- 1} times the optimal hyperplane and threshold for SVMR with regularization parameter C_r = (1-epsilon)C_c. A direct consequence of this result is that SVMC can be seen as a special case of SVMR.
Resumo:
Most studies involving statistical time series analysis rely on assumptions of linearity, which by its simplicity facilitates parameter interpretation and estimation. However, the linearity assumption may be too restrictive for many practical applications. The implementation of nonlinear models in time series analysis involves the estimation of a large set of parameters, frequently leading to overfitting problems. In this article, a predictability coefficient is estimated using a combination of nonlinear autoregressive models and the use of support vector regression in this model is explored. We illustrate the usefulness and interpretability of results by using electroencephalographic records of an epileptic patient.
Resumo:
As a new modeling method, support vector regression (SVR) has been regarded as the state-of-the-art technique for regression and approximation. In this study, the SVR models had been introduced and developed to predict body and carcass-related characteristics of 2 strains of broiler chicken. To evaluate the prediction ability of SVR models, we compared their performance with that of neural network (NN) models. Evaluation of the prediction accuracy of models was based on the R-2, MS error, and bias. The variables of interest as model output were BW, empty BW, carcass, breast, drumstick, thigh, and wing weight in 2 strains of Ross and Cobb chickens based on intake dietary nutrients, including ME (kcal/bird per week), CP, TSAA, and Lys, all as grams per bird per week. A data set composed of 64 measurements taken from each strain were used for this analysis, where 44 data lines were used for model training, whereas the remaining 20 lines were used to test the created models. The results of this study revealed that it is possible to satisfactorily estimate the BW and carcass parts of the broiler chickens via their dietary nutrient intake. Through statistical criteria used to evaluate the performance of the SVR and NN models, the overall results demonstrate that the discussed models can be effective for accurate prediction of the body and carcass-related characteristics investigated here. However, the SVR method achieved better accuracy and generalization than the NN method. This indicates that the new data mining technique (SVR model) can be used as an alternative modeling tool for NN models. However, further reevaluation of this algorithm in the future is suggested.
Resumo:
Stimulation of antitumor immune mechanisms is the primary goal of cancer immunotherapy, and accumulating evidence suggests that effective alteration of the host–tumor relationship involves immunomodulating cytokines and also the presence of costimulatory molecules. To examine the antitumor effect of direct in vivo gene transfer of murine interleukin 12 (IL-12) and B7-1 into tumors, we developed an adenovirus (Ad) vector, AdIL12–B7-1, that encodes the two IL-12 subunits in early region 1 (E1) and the B7-1 gene in E3 under control of the murine cytomegalovirus promoter. This vector expressed high levels of IL-12 and B7-1 in infected murine and human cell lines and in primary murine tumor cells. In mice bearing tumors derived from a transgenic mouse mammary adenocarcinoma, a single intratumoral injection with a low dose (2.5 × 107 pfu/mouse) of AdIL12–B7-1 mediated complete regression in 70% of treated animals. By contrast, administration of a similar dose of recombinant virus encoding IL-12 or B7-1 alone resulted in only a delay in tumor growth. Interestingly, coinjection of two different viruses expressing either IL-12 or B7-1 induced complete tumor regression in only 30% of animals treated at this dose. Significantly, cured animals remained tumor free after rechallenge with fresh tumor cells, suggesting that protective immunity had been induced by treatment with AdIL12–B7-1. These results support the use of Ad vectors as a highly efficient delivery system for synergistically acting molecules and show that the combination of IL-12 and B7-1 within a single Ad vector might be a promising approach for in vivo cancer therapy.
Resumo:
Treatment of a human breast cancer cell line (MDA-MB-435) in nude mice with a recombinant adenovirus containing the human interferon (IFN) consensus gene, IFN-con1 (ad5/IFN), resulted in tumor regression in 100% of the animals. Tumor regression occurred when virus was injected either within 24 hr of tumor cell implantation or with established tumors. However, regression of the tumor was also observed in controls in which either the wild-type virus or a recombinant virus containing the luciferase gene was used, although tumor growth was not completely suppressed. Tumor regression was accompanied by a decrease in p53 expression. Two other tumors, the human myelogenous leukemic cell line K562 and the hamster melanoma tumor RPMI 1846, also responded to treatment but only with ad5/IFN. In the case of K562 tumors, there was complete regression of the tumor, and tumors derived from RPMI 1846 showed partial regression. We propose that the complete regression of the breast cancer with the recombinant virus ad5/IFN was the result of two events: viral oncolysis in which tumor cells are being selectively lysed by the replication-competent virus and the enhanced effect of expression of the IFN-con1 gene. K562 and RPMI 1846 tumors regressed only as a result of IFN gene therapy. This was confirmed by in vitro analysis. Our results indicate that a combination of viral oncolysis with a virus of low pathogenicity, itself resistant to the effects of IFN and IFN gene therapy, might be a fruitful approach to the treatment of a variety of different tumors, in particular breast cancers.
Resumo:
Background: Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C-beta atoms in other residues within a sphere around the C-beta atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence. Results: We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles), we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either contacted or non-contacted, the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds. Conclusion: The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary sequence and higher order consecutive protein structural and functional properties.