982 resultados para vascular expression
Resumo:
Hyperglycemia occurs in a variety of conditions such as overt diabetes, gestational diabetes and mild hyperglycemia, all of which are generally defined based on the oral glucose tolerance test and glucose profiles. Whereas diabetes has received considerable attention in recent decades, few studies have examined the mechanisms of mild hyperglycemia and its associated disturbances. Mild gestational hyperglycemia is associated with macrosomia and a high risk of perinatal mortality. Morphologically, the placenta of these women is characterized by an increase in the number of terminal villi and capillaries, presumably as part of a compensatory mechanism to maintain homeostasis at the maternal-fetal interface. In this study, we analised the expression of VEGF and its receptors VEGFR-1 (Flt-1) and VEGFR-2 (KDR) in placentas from mildly hyperglycemic women. This expression was compared with that of normoglycemic women and women with gestational and overt diabetes. Immunohistochemistry revealed strong staining for VEGF and VEGFR-2 in vascular and trophoblastic cells of mildly hyperglycemic women, whereas the staining for VEGFR-1 was discrete and limited to the trophoblast. The pattern of VEGF and VEGF-receptor reactivity in placentas from women with overt diabetes was similar to that of normoglycemic women. In women with gestational diabetes, strong staining for VEGFR-1 was observed in vascular and trophoblastic cells whereas VEGF and VEGFR-2 were detected only in the trophoblast. The expression of these proteins was confirmed by western blotting, which revealed the presence of an additional band of 75 kDa. In the decidual compartment, only extravillous trophoblast reacted with all antibodies. Morphological analysis revealed collagen deposition around large arteries in all groups with altered glycemia. These findings indicate a placental response to altered glycemia that could have important consequences for the fetus. The change in the placental VEGF/VEGFR expression ratio in mild hyperglycemia may favor angiogenesis in placental tissue and could explain the hypercapillarization of villi seen in this gestational disturbance. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The signalling pathway CD40/CD40L (CD40 ligand) plays an important role in atherosclerotic plaque formation and rupture. AngII (angiotensin II), which induces oxidative stress and inflammation, is also implicated in the progression of atherosclerosis. In the present study, we tested the hypothesis that AngII increases CD40/CD40L activity in vascular cells and that ROS (reactive oxygen species) are part of the signalling cascade that controls CD40/CD40L expression. Human CASMCs (coronary artery smooth muscle cells) in culture exposed to IL (interleukin)-1 beta or TNF-alpha (tumour necrosis factor-a) had increased superoxide generation and enhanced CD40 expression, detected by EPR (electron paramagnetic resonance) and immunoblotting respectively. Both phenomena were abolished by previous incubation with membrane-permeant antioxidants or cell transfection with P22(phox) antisense. AngII (50-200 nmol/l) induced an early and sustained increase in CD40 mRNA and protein expression in CASMCs, which was blocked by treatment with antioxidants. Increased CD40 expression led to enhanced activity of the pathway, as AngII-treated cells stimulated with recombinant CD40L released higher amounts of IL-8 and had increased COX-2 (cyclo-oxygenase-2) expression. We conclude that AngII stimulation of vascular cells leads to a ROS-dependent increase in CD40/CD40L signalling pathway activity. This phenomenon may be an important mechanism modulating the arterial injury observed in atherosclerosis-related vasculopathy.
Resumo:
The aim of this study was to investigate the mechanisms whereby low-intensity laser therapy may affect the severity of oral mucositis. A hamster cheek pouch model of oral mucositis was used with all animals receiving intraperitoneal 5-fluorouracil followed by surface irritation. Animals were randomly allocated into three groups and treated with a 35 mW laser, 100 mW laser, or no laser. Clinical severity of mucositis was assessed at four time-points by a blinded examiner. Buccal pouch tissue was harvested from a subgroup of animals in each group at four time-points. This tissue was used for immunohistochemistry for cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), and factor VIII (marker of microvessel density) and the resulting staining was quantified. Peak severity of mucositis was reduced in the 35 mW laser group as compared to the 100 mW laser and control groups. This reduced peak clinical severity of mucositis in the 35 mW laser group was accompanied by a significantly lower level of COX-2 staining. The 100 mW laser did not have an effect on the severity of clinical mucositis, but was associated with a decrease in VEGF levels at the later time-points, as compared to the other groups. There was no clear relationship of VEGF levels or microvessel density to clinical mucositis severity. The tissue response to laser therapy appears to vary by dose. Low-intensity laser therapy appears to reduce the severity of mucositis, at least in part, by reducing COX-2 levels and associated inhibition of the inflammatory response.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Granulocyte colony-stimulating factor (G-CSF) regulates granulocyte precursor cell proliferation, neutrophil survival, and activation. Cyclic hematopoiesis, a disease that occurs both in humans and grey collie dogs is characterized by cyclical variations in blood neutrophils. Although the underlying molecular defect is not known, long-term daily administration of recombinant G-CSF eliminates the severe recurrent neutropenia, indicating that expression of G-CSF by gene therapy would be beneficial. As a prelude to preclinical studies in affected collie dogs, we monitored hematopoiesis in rats receiving vascular smooth muscle cells transduced to express G-CSF. Cells transduced with LrGSN, a retrovirus expressing rat G-CSF, were implanted in the carotid artery and control animals received cells transduced with LASN, a retrovirus expressing human adenosine deaminase (ADA). Test animals showed significant increases in neutrophil counts for at least 7 weeks, with mean values of 3,670 +/- 740 cells/mu l in comparison to 1,870 +/- 460 cells/mu l in controls (p < 0.001). Thus, in rats G-CSF gene transfer targeted at vascular smooth muscle cells initiated sustained production of 1,800 neutrophils/mu l, a cell number that would provide clinical benefit to patients. Lymphocytes, red cells and platelets were not different between control and test animals (p > 0.05). These studies indicate that retrovirally transduced vascular smooth muscle cells can provide sustained clinically useful levels of neutrophils in vivo.
Resumo:
Delayed wound healing in patients taking bisphosphonates could result from decreased expression of growth factors, which are directly related to cell proliferation and migration. In this study, we evaluated the gene expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) by epithelial cells exposed to zoledronic acid 5 μmol for 48 h using real-time polymerase chain reaction. The gene expression of VEGF and bFGF by epithelial cells exposed to zoledronic acid decreased by 34% and 51%, respectively (p = 0.0001 and p = 0.0001). We conclude that zoledronic acid can decrease the expression of growth factors by epithelial cells. © 2013 The British Association of Oral and Maxillofacial Surgeons.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: COX-2 is one of the most important prostaglandin involved in urologic cancer and seems to be associated with tumor progression, invasion, and metastasis. In addition, several effects have been reported for VEGF, including inducing angiogenesis, promoting cell migration, and inhibiting apoptosis. COX2 and VEGF up-regulation have been reported in human prostate cancer. Due to the importance of canine natural model for prostate cancer, the aim of this study was to evaluate COX-2 and VEGF protein expression in canine carcinogenic process. Material and Methods: Seventy-four prostatic tissues from dogs were selected to be evaluated for protein expression by immunohistochemistry (IHC), including: 10 normal prostatic tissues, 20 benign prostatic hyperplasias (BPH), 25 proliferative inflammatory atrophies (PIA) and 20 prostatic carcinomas (PCa). COX-2 and VEGF were detected using the monoclonal antibody CX-294 (1:50 dilution, Dako Cytomation and sc-53463 (1:100 dilution, Santa Cruz), respectively. The immunolabelling was performed by a polymer method (Histofine, Nichirei Biosciences). All reaction included negative controls by omitting the primary antibody. The percentage of C-MYC, E-cadherin, and p63- positive cells per lesion was evaluated according to Prowatke et al. (2007). The samples were scored separately according to staining intensity and graded semi-quantitatively as negative, weakly positive (1), moderately positive, and strongly positive. The score was done in one 400 magnification field, considering only the lesion, since this was done in a TMA core of 1 mm. For statistical analyses, the immunostaining classifications were reduced to two categories: negative and positive. The negative category included negative and weakly positive staining. Chi-square or Fisher exact test was used to determine the association between the categorical variables. Results: The COX-2 protein expression was elevated in the cytoplasm of the canine PCa and PIA compared to normal prostate (p=0.002). VEGF protein expression was increased in 94.75% of the PCa and 100% of the PIA compared with to normal prostate (p = 0.001). No difference was found when compared normal prostate with BPH. Conclusions: This study has demonstrated that the carcinogenesis of canine prostatic tissue may be related to gain of COX-2 and VEGF protein expression.
Resumo:
Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.
Resumo:
Abstract: Background Pancreatic cancer is a rare tumor with an extremely low survival rate. Its known risk factors include the chronic use of tobacco and excessive alcohol consumption and the presence of chronic inflammatory diseases, such as pancreatitis and type 2 diabetes. Angiogenesis and lymphangiogenesis, which have been the focus of recent research, are considered prognostic factors for cancer development. Knowing the angiogenic and lymphangiogenic profiles of a tumor may provide new insights for designing treatments according to the different properties of the tumor. The aim of this study was to evaluate the density of blood and lymphatic vessels, and the expression of VEGF-A, in pancreatic adenocarcinomas, as well as the relationship between blood and lymphatic vascular density and the prognostically important clinical-pathological features of pancreatic tumors. Methods Paraffin blocks containing tumor samples from 100 patients who were diagnosed with pancreatic cancer between 1990 and 2010 were used to construct a tissue microarray. VEGF expression was assessed in these samples by immunohistochemistry. To assess the lymphatic and vascular properties of the tumors, 63 cases that contained sufficient material were sectioned routinely. The sections were then stained with the D2-40 antibody to identify the lymphatic vessels and with a CD34 antibody to identify the blood vessels. The vessels were counted individually with the Leica Application Suite v4 program. All statistical analyses were performed using SPSS 18.0 (Chicago, IL, USA) software, and p values ≤ 0.05 were considered significant. Results In the Cox regression analysis, advanced age (p=0.03) and a history of type 2 diabetes (p=0.014) or chronic pancreatitis (p=0.02) were shown to be prognostic factors for pancreatic cancer. Blood vessel density (BVD) had no relationship with clinical-pathological features or death. Lymphatic vessel density (LVD) was inversely correlated with death (p=0.002), and by Kaplan-Meyer survival analysis, we found a significant association between low LVD (p=0.021), VEGF expression (p=0.023) and low patient survival. Conclusions Pancreatic carcinogenesis is related to a history of chronic inflammatory processes, such as type 2 diabetes and chronic pancreatitis. In pancreatic cancer development, lymphangiogenesis can be considered an early event that enables the dissemination of metastases. VEGF expression and low LVD can be considered as poor prognostic factors as tumors with this profile are fast growing and highly aggressive. Virtual slides. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5113892881028514
Resumo:
Background. Ageing and inflammation are critical for the occurrence of aortic diseases. Extensive inflammatory infiltrate and excessive ECM proteloysis, mediated by MMPs, are typical features of abdominal aortic aneurysm (AAA). Mesenchymal Stromal Cells (MSCs) have been detected within the vascular wall and represent attractive candidates for regenerative medicine, in virtue of mesodermal lineage differentiation and immunomodulatory activity. Meanwhile, many works have underlined an impaired MSC behaviour under pathological conditions. This study was aimed to define a potential role of vascular MSCs to AAA development. Methods. Aortic tissues were collected from AAA patients and healthy donors. Our analysis was organized on three levels: 1) histology of AAA wall; 2) detection of MSCs and evaluation of MMP-9 expression on AAA tissue; 3) MSC isolation from AAA wall and characterization for mesenchymal/stemness markers, MMP-2, MMP-9, TIMP-1, TIMP-2 and EMMPRIN. AAA-MSCs were tested for immunomodulation, when cultured together with activated peripheral blood mononuclear cells (PBMCs). In addition, a co-colture of both healthy and AAA MSCs was assessed and afterwards MMP-2/9 mRNA levels were analyzed. Results. AAA-MSCs showed basic mesenchymal properties: fibroblastic shape, MSC antigens, stemness genes. MMP-9 mRNA, protein and enzymatic activity were significantly increased in AAA-MSCs. Moreover, AAA-MSCs displayed a weak immunosuppressive activity, as shown by PBMC ongoing along cell cycle. MMP-9 was shown to be modulated at the transcriptional level through the direct contact as well as the paracrine action of healthy MSCs. Discussion. Vascular injury did not affect the MSC basic phenotype, but altered their function, a increased MMP-9 expression and ineffective immunmodulation. These data suggest that vascular MSCs can contribute to aortic disease. In this view, the study of key processes to restore MSC immunomodulation could be relevant to find a pharmacological approach for monitoring the aneurysm progression.
Resumo:
The concept of vascular pruning, the "cuting-off" of vessels, is gaining importance due to expansion of angio-modulating therapies. The proangiogenic effects of vascular endothelial growth factor (VEGF) are broadly described, but the mechanisms of structural alterations by its downregulation are not known.
Resumo:
Gastrin-releasing peptide (GRP) and GRP receptors (GRPR) play a role in tumor angiogenesis. Recently, GRPR were found to be frequently expressed in the vasculature of a large variety of human cancers. Here, we characterize these GRPR by comparing the vascular GRPR expression and localization in a selection of human cancers with that of an established biological marker of neoangiogenesis, the vascular endothelial growth factor (VEGF) receptor. In vitro quantitative receptor autoradiography was performed in parallel for GRPR and VEGF receptors (VEGFR) in 32 human tumors of various origins, using ¹²⁵I-Tyr-bombesin and ¹²⁵I-VEGF₁₆₅ as radioligands, respectively. Moreover, VEGFR-2 was evaluated immunohistochemically. All tumors expressed GRPR and VEGFR in their vascular system. VEGFR were expressed in the endothelium in the majority of the vessels. GRPR were expressed in a subpopulation of vessels, preferably in their muscular coat. The vessels expressing GRPR were all VEGFR-positive whereas the VEGFR-expressing vessels were not all GRPR-positive. GRPR expressing vessels were found immunohistochemically to co-express VEGFR-2. Remarkably, the density of vascular GRPR was much higher than that of VEGFR. The concomitant expression of GRPR with VEGFR appears to be a frequent phenomenon in many human cancers. The GRPR, localized and expressed in extremely high density in a subgroup of vessels, may function as target for antiangiogenic tumor therapy or angiodestructive targeted radiotherapy with radiolabeled bombesin analogs alone, or preferably together with VEGFR targeted therapy.
Resumo:
Vascular endothelial growth factor (VEGF) can induce normal angiogenesis or the growth of angioma-like vascular tumors depending on the amount secreted by each producing cell because it remains localized in the microenvironment. In order to control the distribution of VEGF expression levels in vivo, we recently developed a high-throughput fluorescence-activated cell sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a specific VEGF dose from a heterogeneous primary population. Here we tested the hypothesis that cell-based delivery of a controlled VEGF level could induce normal angiogenesis in the heart, while preventing the development of angiomas. Freshly isolated human adipose tissue-derived stem cells (ASC) were transduced with retroviral vectors expressing either rat VEGF linked to a FACS-quantifiable cell-surface marker (a truncated form of CD8) or CD8 alone as control (CTR). VEGF-expressing cells were FACS-purified to generate populations producing either a specific VEGF level (SPEC) or uncontrolled heterogeneous levels (ALL). Fifteen nude rats underwent intramyocardial injection of 10(7) cells. Histology was performed after 4 weeks. Both the SPEC and ALL cells produced a similar total amount of VEGF, and both cell types induced a 50%-60% increase in both total and perfused vessel density compared to CTR cells, despite very limited stable engraftment. However, homogeneous VEGF expression by SPEC cells induced only normal and stable angiogenesis. Conversely, heterogeneous expression of a similar total amount by the ALL cells caused the growth of numerous angioma-like structures. These results suggest that controlled VEGF delivery by FACS-purified ASC may be a promising strategy to achieve safe therapeutic angiogenesis in the heart.
Resumo:
TIE2 is a vascular endothelial-specific receptor tyrosine kinase essential for the regulation of vascular network formation and remodeling. Previously, we have shown that the 1.2-kb 5' flanking region of the TIE2 promoter is capable of directing beta-galactosidase reporter gene expression specifically into a subset of endothelial cells (ECs) of transgenic mouse embryos. However, transgene activity was restricted to early embryonic stages and not detectable in adult mice. Herein we describe the identification and characterization of an autonomous endothelial-specific enhancer in the first intron of the mouse TIE2 gene. Furthermore, combination of the TIE2 promoter with an intron fragment containing this enhancer allows it to target reporter gene expression specifically and uniformly to virtually all vascular ECs throughout embryogenesis and adulthood. To our knowledge, this is the first time that an in vivo expression system has been assembled by which heterologous genes can be targeted exclusively to the ECs of the entire vasculature. This should be a valuable tool to address the function of genes during physiological and pathological processes of vascular ECs in vivo. Furthermore, we were able to identify a short region critical for enhancer function in vivo that contains putative binding sites for Ets-like transcription factors. This should, therefore, allow us to determine the molecular mechanisms underlying the vascular-EC-specific expression of the TIE2 gene.