976 resultados para ultrashort pulse
Resumo:
从理论上推导了第Ⅱ类相位匹配下宽带飞秒脉冲的二次谐波光场,分析输入飞秒脉冲的非共线相位匹配方式、脉冲带宽引起相位失配与群速失配对测量的影响。结果表明,为了消除飞秒脉冲的带宽影响,需要对测量记录的光强乘以一个调制因子;测量相位误差与非共线相位匹配的夹角和晶体长度成正比;相位失配与群速失配产生相位测量误差,且第Ⅱ类相位匹配方式下脉冲附加相位值较大;强度和相位误差需要在脉冲重建结果中补偿。
Resumo:
超短脉冲激光在生物医学、激光微加工、国防等领域有重要的应用。随着双包层光纤激光技术的发展,基于双包层光纤或光子晶体光纤(PCF)的超短脉冲激光光纤放大技术由于在体积、效率、光束质量等方面的优势,倍受关注。主要报道国内外皮秒和飞秒级超短脉冲激光光纤放大的最新进展,介绍其在微加工、超连续谱产生和太赫兹波产生方面的典型应用。
Resumo:
Periodic nanostructures along the polarization direction of light are observed inside silica glasses and tellurium dioxide single crystal after irradiation by a focused single femtosecond laser beam. Backscattering electron images of the irradiated spot inside silica glass reveal a periodic structure of stripe-like regions of similar to 20 nm width with a low oxygen concentration. In the case of the tellurium dioxide single crystal, secondary electron images within the focal spot show the formation of a periodic structure of voids with 30 nm width. Oxygen defects in a silica glass and voids in a tellurium dioxide single crystal are aligned perpendicular to the laser polarization direction. These are the smallest nanostructures below the diffraction limit of light, which are formed inside transparent materials. The phenomenon is interpreted in terms of interference between the incident light field and the electric field of electron plasma wave generated in the bulk of material.
Resumo:
Femtosecond pulsed lasers have been widely used for materials microprocessing. Due to their ultrashort pulse width and ultrahigh light intensity, the process is generally characterized by the nonthermal diffusion process. We observed various induced microstructures such as refractive-index-changed structures, color center defects, microvoids and microcracks in transparent materials (e.g., glasses after the femtosecond laser irradiation), and discussed the possible applications of the microstructures in the fabrication of various micro optical devices [e.g., optical waveguides, microgratings, microlenses, fiber attenuators, and three-dimensional (3D) optical memory]. In this paper, we review our recent research developments on single femtosecond-laser-induced nanostructures. We introduce the space-selective valence state manipulation of active ions, precipitation and control of metal nanoparticles and light polarization-dependent permanent nanostructures, and discuss the mechanisms and possible applications of the observed phenomena.
Resumo:
基于啁啾脉冲放大技术的超短脉冲激光系统是提供超快、超强激光的重要途径,具有良好输出波形和高损伤阈值的多层介质膜脉冲宽度压缩光栅是获得高峰值功率脉冲激光的关键。基于傅里叶谱变换方法和严格模式理论,分析了多层介质膜光栅(MDG)在超短脉冲作用下的光学特性。结果表明,当MDG的反射带宽小于具有高斯分布的入射脉冲的频谱宽度时,-1级反射脉冲呈非对称高斯分布,其前沿出现振荡,并且-1级反射脉冲能量开始剧烈下降,讨论了MDG结构参数对其反射带宽的影响。分析了MDG与超短脉冲作用时的近场光分布,对提高其抗激光损伤特性具
Resumo:
Over the past decades mode-locked fibre lasers have been extensively refined and developed, with most research efforts focussing on employing rare-earth doped fibres as the active elements [1]. This presents the problem that operation is limited to regions of the spectrum where such elements exhibit gain [1]. Raman amplification in silica fibre is an attractive way to overcome this spectral limitation, with gain available across the entire transparency window (300 nm - 2300 nm) [2-4]. There have been a number of reports utilising Raman gain in ultrashort pulse sources [2-4], however none using a broadband saturable absorber, such as carbon nanotubes [5-7] and graphene [7-9]. A broadband saturable absorber is an essential pre-requisite in order to fully exploit the wavelength flexibility provided by the Raman gain in short pulse mode-locked fiber lasers. © 2011 IEEE.
Resumo:
An analysis is made of the conditions for the generation of superfluorescence pulses in an inverted medium of electron-hole pairs in a semiconductor. It is shown that strong optical amplification in laser semiconductor amplifiers characterised by αL ≫ 1 leads to suppression of phase re-laxation of the medium during the initial stages of evolution of superfluorescence and to formation of a macroscopic dipole from electron-hole pairs. Cooperative emission of radiation in this system results in generation of a powerful ultrashort pulse of the optical gain, which interacts coherently with the semiconductor medium. It is shown that coherent pulsations of the optical field, observed earlier by the author in Q-switched semiconductor lasers, are the result of superfluorescence and of the coherent interaction between the optical field and the medium.
Resumo:
An analysis is made of the conditions for the generation of superfluorescence pulses in an inverted medium of electron-hole pairs in a semiconductor. It is shown that strong optical amplification in laser semiconductor amplifiers characterised by αL ≫ 1 (α is the small-signal gain and L is the amplifier length) leads to suppression of phase relaxation of the medium during the initial stages of evolution of superfluorescence and to formation of a macroscopic dipole from electron - hole pairs. Cooperative emission of radiation in this system results in generation of a powerful ultrashort pulse of the optical gain, which interacts coherently with the semiconductor medium. It is shown that coherent pulsations of the optical field, observed earlier by the author in Q-switched semiconductor lasers, are the result of superfluorescence and of the coherent interaction between the optical field and the medium.
Resumo:
A new dynamic regime in a multisegmented AlGaAs/GaAs DH injection laser has been realised. Generation of bandwidth-limited 100 GHz repetition rate pulses has been demonstrated. This value is claimed to be the largest ever reported for an ultrashort pulse repetition frequency obtained directly from a laser.
Resumo:
Intense, few-femtosecond pulse technology has enabled studies of the fastest vibrational relaxation processes. The hydrogen group vibrations can be imaged and manipulated using intense infrared pulses. Through numerical simulation, we demonstrate an example of ultrafast coherent control that could be effected with current experimental facilities, and observed using high-resolution time-of-flight spectroscopy. The proposal is a pump-probe-type technique to manipulate the D2+ ion with ultrashort pulse sequences. The simulations presented show that vibrational selection can be achieved through pulse delay. We find that the vibrational system can be purified to a two-level system thus realizing a vibrational qubit. A novel scheme for the selective transfer of population between these two levels, based on a Raman process and conditioned upon the delay time of a second control-pulse is outlined, and may enable quantum encoding with this system.
Resumo:
An attosecond pump-probe scheme that combines the use of a free-electron laser pulse with an ultrashort pulse is applied in order to explore the ultrafast excitation dynamics in Ne. We describe the multielectron dynamics using a new nonperturbative time-dependent R-matrix theory. This theory enables the interaction of ultrashort light fields with multielectron atoms and atomic ions to be determined from first principles. By probing the emission of an inner 2s electron from Ne we are also able to study the bound state population dynamics during the free-electron laser pulse.
Resumo:
Recent progress in the development of XUV lasers by research teams using high-power and ultrashort-pulse Nd:glass and KrF laser facilities at the Rutherford Appleton Laboratory is reviewed. Injector-amplifier operation and prepulse enhanced output of the Ge XXIII collisional laser driven by a kilojoule glass laser, enhanced gain in CVI recombination with picosecond CPA drive pulses from a glass laser, and optical field ionization and XUV harmonic generation with a KrF CPA laser are described.
Resumo:
We have investigated the photoionization of Ne+ in the combined field of a short infrared laser pulse and a delayed ultrashort pulse of the infrared laser's 23rd harmonic. We observe an ionization yield compatible with a picture in which one electron gets excited into Rydberg states by the harmonic laser field and is subsequently removed by the infrared laser field. Modulations are seen in the ionization yield as a function of time delay. These modulations originate from the trapping of population in low members of the Rydberg series with different states being populated at different ranges of delay times. The calculations further demonstrate that single-threshold calculations cannot reproduce the Ne+ photoionization yields obtained in multithreshold calculations.
Resumo:
Time-resolved diffraction with femtosecond electron pulses has become a promising technique to directly provide insights into photo induced primary dynamics at the atomic level in molecules and solids. Ultrashort pulse duration as well as extensive spatial coherence are desired, however, space charge effects complicate the bunching of multiple electrons in a single pulse.Weexperimentally investigate the interplay between spatial and temporal aspects of resolution limits in ultrafast electron diffraction (UED) on our highly compact transmission electron diffractometer. To that end, the initial source size and charge density of electron bunches are systematically manipulated and the resulting bunch properties at the sample position are fully characterized in terms of lateral coherence, temporal width and diffracted intensity.Weobtain a so far not reported measured overall temporal resolution of 130 fs (full width at half maximum) corresponding to 60 fs (root mean square) and transversal coherence lengths up to 20 nm. Instrumental impacts on the effective signal yield in diffraction and electron pulse brightness are discussed as well. The performance of our compactUEDsetup at selected electron pulse conditions is finally demonstrated in a time-resolved study of lattice heating in multilayer graphene after optical excitation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)