774 resultados para ultimate strength


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physical and mechanical properties of metal matrix composites were improved by the addition of reinforcements. The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Titanium diboride (TiB2) particles were used as the reinforcement. All the composites were produced by hot extrusion. The tensile properties and fracture characteristics of these materials were investigated at room temperature and at high temperatures to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy. TiB2 particles provide high stability of the aluminium alloys (6061 and 7015) in the fabrication process. An improvement in the mechanical behaviour was achieved by adding TiB2 particles as reinforcement in both the aluminium alloys. Adding TiB2 particles reduces the ductility of the aluminium alloys but does not change the microscopic mode of failure, and the fracture surface exhibits a ductile appearance with dimples formed by coalescence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El refuerzo de estructuras existentes mediante el encolado exterior de láminas de polímeros reforzados con fibras (FRP) se ha convertido en la aplicación más común de los materiales compuestos avanzados en construcción. Estos materiales presentan muchas ventajas frente a los materiales convencionales (sin corrosión, ligeros, de fácil aplicación, etc.). Pero a pesar de las numerosas investigaciones realizadas, aún persisten ciertas dudas sobre algunos aspectos de su comportamiento y las aplicaciones prácticas se llevan a cabo sólo con la ayuda de guías, sin que haya una normativa oficial. El objetivo de este trabajo es incrementar el conocimiento sobre esta técnica de refuerzo, y más concretamente, sobre el refuerzo a flexión de estructuras de fábrica. Con frecuencia el elemento reforzado es de hormigón armado y las láminas de FRP encoladas al exterior sirven para mejorar su resistencia a flexión, cortante o compresión (encamisados). Sin embargo su empleo en otros materiales como las estructuras de fábrica resulta muy prometedor. Las fábricas se caracterizan por soportar muy bien los esfuerzos de compresión pero bastante mal los de tracción. Adherir láminas de materiales compuestos puede servir para mejorar la capacidad resistente de elementos de fábrica sometidos a esfuerzos de flexión. Pero para ello, debe quedar garantizada una correcta adherencia entre el FRP y la fábrica, especialmente en edificios antiguos cuya superficie puede estar deteriorada por encontrarse a la intemperie o por el propio paso del tiempo. En el capítulo II se describen los objetivos fundamentales del trabajo y el método seguido. En el capítulo III se hace una amplia revisión del estado de conocimiento sobre el tema. En el apartado III.1 se detallan las principales características y propiedades mecánicas de fibras, matrices y materiales compuestos así como sus principales aplicaciones, haciendo especial hincapié en aspectos relativos a su durabilidad. En el apartado III.2 se incluye una revisión histórica de las líneas de investigación, tanto teóricas como empíricas, publicadas sobre estructuras de hormigón reforzadas a flexión encolando materiales compuestos. El apartado III.3 se centra en el aspecto fundamental de la adherencia refuerzo-soporte. Se hace un repaso a distintos modelos propuestos para prevenir el despegue distinguiendo si éste se inicia en la zona de anclaje o si está inducido por fisuras en la zona interior del elemento. Se observa falta de consenso en las propuestas. Además en este punto se relatan las campañas experimentales publicadas acerca de la adherencia entre materiales compuestos y fábricas. En el apartado III.4 se analizan las particularidades de las estructuras de fábrica. Además, se revisan algunas de las investigaciones relativas a la mejora de su comportamiento a flexión mediante láminas de FRP. El comportamiento mecánico de muros reforzados solicitados a flexión pura (sin compresión) ha sido documentado por varios autores, si bien es una situación poco frecuente en fábricas reales. Ni el comportamiento mecánico de muros reforzados solicitados a flexocompresión ni la incidencia que el nivel de compresión soportado por la fábrica tiene sobre la capacidad resistente del elemento reforzado han sido suficientemente tratados. En cuanto a los trabajos teóricos, las diferentes propuestas se basan en los métodos utilizados para hormigón armado y comparten los principios habituales de cálculo. Sin embargo, presentan diferencias relativas, sobre todo, a tres aspectos: 1) la forma de modelar el comportamiento de la fábrica, 2) el valor de deformación de cálculo del refuerzo, y 3) el modo de fallo que se considera recomendable buscar con el diseño. A pesar de ello, el ajuste con la parte experimental de cada trabajo suele ser bueno debido a una enorme disparidad en las variables consideradas. Cada campaña presenta un modo de fallo característico y la formulación que se propone resulta apropiada para él. Parece necesario desarrollar un método de cálculo para fábricas flexocomprimidas reforzadas con FRP que pueda ser utilizado para todos los posibles fallos, tanto atribuibles a la lámina como a la fábrica. En el apartado III.4 se repasan algunas lesiones habituales en fábricas solicitadas a flexión y se recogen ejemplos de refuerzos con FRP para reparar o prevenir estos daños. Para mejorar el conocimiento sobre el tema, se llevan a cabo dos pequeñas campañas experimentales realizadas en el Instituto de Ciencias de la Construcción Eduardo Torroja. La primera acerca de la adherencia de materiales compuestos encolados a fábricas deterioradas (apartado IV.1) y la segunda sobre el comportamiento estructural a flexocompresión de probetas de fábrica reforzadas con estos materiales (apartado IV.2). En el capítulo V se analizan algunos de los modelos de adherencia propuestos para prevenir el despegue del extremo del refuerzo. Se confirma que las predicciones obtenidas con ellos resultan muy dispares. Se recopila una base de datos con los resultados experimentales de campañas sobre adherencia de FRP a fábricas extraídas de la literatura y de los resultados propios de la campaña descrita en el punto IV.1. Esta base de datos permite conocer cual de los métodos analizados resulta más adecuado para dimensionar el anclaje de láminas de FRP adheridas a fábricas. En el capítulo VI se propone un método para la comprobación en agotamiento de secciones de fábrica reforzadas con materiales compuestos sometidas a esfuerzos combinados de flexión y compresión. Está basado en el procedimiento de cálculo de la capacidad resistente de secciones de hormigón armado pero adaptado a las fábricas reforzadas. Para ello, se utiliza un diagrama de cálculo tensión deformación de la fábrica de tipo bilineal (acorde con el CTE DB SE-F) cuya simplicidad facilita el desarrollo de toda la formulación al tiempo que resulta adecuado para predecir la capacidad resistente a flexión tanto para fallos debidos al refuerzo como a la fábrica. Además se limita la deformación de cálculo del refuerzo teniendo en consideración ciertos aspectos que provocan que la lámina adherida no pueda desarrollar toda su resistencia, como el desprendimiento inducido por fisuras en el interior del elemento o el deterioro medioambiental. En concreto, se propone un “coeficiente reductor por adherencia” que se determina a partir de una base de datos con 68 resultados experimentales procedentes de publicaciones de varios autores y de los ensayos propios de la campaña descrita en el punto IV.2. También se revisa la formulación propuesta con ayuda de la base de datos. En el capítulo VII se estudia la incidencia de las principales variables, como el axil, la deformación de cálculo del refuerzo o su rigidez, en la capacidad final del elemento. Las conclusiones del trabajo realizado y las posibles líneas futuras de investigación se exponen en el capítulo VIII. ABSTRACT Strengthening of existing structures with externally bonded fiber reinforced polymers (FRP) has become the most common application of advanced composite materials in construction. These materials exhibit many advantages in comparison with traditional ones (corrosion resistance, light weight, easy to apply, etc.). But despite countless researches have been done, there are still doubts about some aspects of their behaviour and applications are carried out only with the help of guidelines, without official regulations. The aim of this work is to improve the knowledge on this retrofitting technique, particularly in regard to flexural strengthening of masonry structures. Reinforced concrete is often the strengthened material and external glued FRP plates are used to improve its flexural, shear or compressive (by wrapping) capacity. However the use of this technique on other materials like masonry structures looks promising. Unreinforced masonry is characterized for being a good material to support compressive stresses but really bad to withstand tensile ones. Glue composite plates can improve the flexural capacity of masonry elements subject to bending. But a proper bond between FRP sheet and masonry must be ensured to do that, especially in old buildings whose surface can be damaged due to being outside or ageing. The main objectives of the work and the methodology carried out are described In Chapter II. An extensive overview of the state of art is done in Chapter III. In Section III.1 physical and mechanical properties of fibers, matrix and composites and their main applications are related. Durability aspects are especially emphasized. Section III.2 includes an historical overview of theoretical and empirical researches on concrete structures strengthened gluing FRP plates to improve their flexural behaviour. Section III.3 focuses on the critical point of bonding between FRP and substrate. Some theoretical models to prevent debonding of FRP laminate are reviewed, it has made a distinction between models for detachment at the end of the plate or debonding in the intermediate zones due to the effects of cracks. It is observed a lack of agreement in the proposals. Some experimental studies on bonding between masonry and FRP are also related in this chapter. The particular characteristics of masonry structures are analyzed in Section III.4. Besides some empirical and theoretical investigations relative to improve their flexural capacity with FRP sheets are reviewed. The mechanical behaviour of strengthened walls subject to pure bending (without compression) has been established by several authors, but this is an unusual situation for real masonry. Neither mechanical behaviour of walls subject to bending and compression nor influence of axial load in the final capacity of the strengthened element are adequately studied. In regard to theoretical studies, the different proposals are based on reinforced concrete analytical methods and share common design principles. However, they present differences, especially, about three aspects: 1) the constitutive law of masonry, 2) the value of ultimate FRP strain and 3) the desirable failure mode that must be looked for. In spite of them, a good agreement between each experimental program and its theoretical study is often exhibited due to enormous disparity in considered test parameters. Each experimental program usually presents a characteristic failure mode and the proposed formulation results appropriate for this one. It seems necessary to develop a method for FRP strengthened walls subject to bending and compression enable for all failure modes (due to FRP or masonry). Some common damages in masonry subject to bending are explained in Section III.4. Examples of FRP strengthening to repair or prevent these damages are also written. Two small experimental programs are carried out in Eduardo Torroja Institute to improve the knowledge on this topic. The first one is concerned about the bond between FRP plates and damaged masonry (section IV.1) and the second one is related to the mechanical behaviour of the strengthened masonry specimens subject to out of plane bending combined with axial force (section IV.2). In the Chapter V some bond models to prevent the debonding at the FRP plate end are checked. It is confirmed that their predictions are so different. A pure-shear test database is compiled with results from the existing literature and others from the experimental program described in section IV.1. This database lets know which of the considered model is more suitable to design anchorage lengths of glued FRP to masonry. In the Chapter VI a method to check unreinforced masonry sections with external FRP strengthening subject to bending and compression to the ultimate limit state is proposed. This method is based on concrete reinforced one, but it is adapted to strengthened masonry. A bilinear constitutive law is used for masonry (according to CTE DB SE-F). Its simplicity helps to develop the model formulation and it has proven to be suitable to predict bending capacity either for FRP failures or masonry crushing. With regard to FRP, the design strain is limited. It is taken into account different aspects which cause the plate can’t reach its ultimate strength, like intermediate FRP debonding induced by opening cracking or environmental damage. A “bond factor” is proposed. It is obtained by means of an experimental bending test database that includes 68 results from the existing literature and from the experimental program described in section IV.2. The proposed formulation has also been checked with the help of bending database. The effects of the main parameters, like axial load, FRP design effective strain or FRP stiffness, on the bending capacity of the strengthened element are studied in Chapter VII. Finally, the main conclusions from the work carried out are summarized in Chapter VIII. Future lines of research to be explored are suggested as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este trabajo se aborda una cuestión central en el diseño en carga última de estructuras de hormigón armado y de fábrica: la posibilidad efectiva de que las deformaciones plásticas necesarias para verificar un estado de rotura puedan ser alcanzadas por las regiones de la estructura que deban desarrollar su capacidad última para verificar tal estado. Así, se parte de las decisiones de diseño que mediante mera estática aseguran un equilibrio de la estructura para las cargas últimas que deba resistir, pero determinando directamente el valor de las deformaciones necesarias para llegar a tal estado. Por tanto, no se acude a los teoremas de rotura sin más, sino que se formula el problema desde un punto de vista elastoplástico. Es decir, no se obvia el recorrido que la estructura deba realizar en un proceso de carga incremental monótono, de modo que las regiones no plastificadas contribuyen a coaccionar las libres deformaciones plásticas que, en la teoría de rotura, se suponen. En términos de trabajo y energía, se introduce en el balance del trabajo de las fuerzas externas y en el de la energía de deformación, aquella parte del sistema que no ha plastificado. Establecido así el balance energético como potencial del sistema es cuando la condición de estacionariedad del mismo hace determinados los campos de desplazamientos y, por tanto, el de las deformaciones plásticas también. En definitiva, se trata de un modo de verificar si la ductilidad de los diseños previstos es suficiente, y en qué medida, para verificar el estado de rotura previsto, para unas determinadas cargas impuestas. Dentro del desarrollo teórico del problema, se encuentran ciertas precisiones importantes. Entre ellas, la verificación de que el estado de rotura a que se llega de manera determinada mediante el balance energético elasto-plástico satisface las condiciones de la solución de rotura que los teoremas de carga última predicen, asegurando, por tanto, que la solución determinada -unicidad del problema elásticocoincide con el teorema de unicidad de la carga de rotura, acotando además cuál es el sistema de equilibrio y cuál es la deformada de colapso, aspectos que los teoremas de rotura no pueden asegurar, sino sólo el valor de la carga última a verificar. Otra precisión se basa en la particularidad de los casos en que el sistema presenta una superficie de rotura plana, haciendo infinitas las posibilidades de equilibrio para una misma deformada de colapso determinada, lo que está en la base de, aparentemente, poder plastificar a antojo en vigas y arcos. Desde el planteamiento anterior, se encuentra entonces que existe una condición inherente a cualquier sistema, definidas unas leyes constitutivas internas, que permite al mismo llegar al inicio del estado de rotura sin demandar deformación plástica alguna, produciéndose la plastificación simultánea de todas las regiones que hayan llegado a su solicitación de rotura. En cierto modo, se daría un colapso de apariencia frágil. En tal caso, el sistema conserva plenamente hasta el final su capacidad dúctil y tal estado actúa como representante canónico de cualquier otra solución de equilibrio que con idéntico criterio de diseño interno se prevea para tal estructura. En la medida que el diseño se acerque o aleje de la solución canónica, la demanda de ductilidad del sistema para verificar la carga última será menor o mayor. Las soluciones que se aparten en exceso de la solución canónica, no verificarán el estado de rotura previsto por falta de ductilidad: la demanda de deformación plástica de alguna región plastificada estará más allá de la capacidad de la misma, revelándose una carga de rotura por falta de ductilidad menor que la que se preveía por mero equilibrio. Para la determinación de las deformaciones plásticas de las rótulas, se ha tomado un modelo formulado mediante el Método de los Elementos de Contorno, que proporciona un campo continuo de desplazamientos -y, por ende, de deformaciones y de tensiones- incluso en presencia de fisuras en el contorno. Importante cuestión es que se formula la diferencia, nada desdeñable, de la capacidad de rotación plástica de las secciones de hormigón armado en presencia de cortante y en su ausencia. Para las rótulas de fábrica, la diferencia se establece para las condiciones de la excentricidad -asociadas al valor relativo de la compresión-, donde las diferencias entres las regiones plastificadas con esfuerzo normal relativo alto o bajo son reseñables. Por otro lado, si bien de manera un tanto secundaria, las condiciones de servicio también imponen un límite al diseño previo en carga última deseado. La plastificación lleva asociadas deformaciones considerables, sean locales como globales. Tal cosa impone que, en estado de servicio, si la plastificación de alguna región lleva asociadas fisuraciones excesivas para el ambiente del entorno, la solución sea inviable por ello. Asimismo, las deformaciones de las estructuras suponen un límite severo a las posibilidades de su diseño. Especialmente en edificación, las deformaciones activas son un factor crítico a la hora de decidirse por una u otra solución. Por tanto, al límite que se impone por razón de ductilidad, se debe añadir el que se imponga por razón de las condiciones de servicio. Del modo anterior, considerando las condiciones de ductilidad y de servicio en cada caso, se puede tasar cada decisión de diseño con la previsión de cuáles serán las consecuencias en su estado de carga última y de servicio. Es decir, conocidos los límites, podemos acotar cuáles son los diseños a priori que podrán satisfacer seguro las condiciones de ductilidad y de servicio previstas, y en qué medida. Y, en caso de no poderse satisfacer, qué correcciones debieran realizarse sobre el diseño previo para poderlas cumplir. Por último, de las consecuencias que se extraen de lo estudiado, se proponen ciertas líneas de estudio y de experimentación para poder llegar a completar o expandir de manera práctica los resultados obtenidos. ABSTRACT This work deals with a main issue for the ultimate load design in reinforced concrete and masonry structures: the actual possibility that needed yield strains to reach a ultimate state could be reached by yielded regions on the structure that should develop their ultimate capacity to fulfill such a state. Thus, some statically determined design decisions are posed as a start for prescribed ultimate loads to be counteracted, but finding out the determined value of the strains needed to reach the ultimate load state. Therefore, ultimate load theorems are not taken as they are, but a full elasto-plastic formulation point of view is used. As a result, the path the structure must develop in a monotonus increasing loading procedure is not neglected, leading to the fact that non yielded regions will restrict the supposed totally free yield strains under a pure ultimate load theory. In work and energy terms, in the overall account of external forces work and internal strain energy, those domains in the body not reaching their ultimate state are considered. Once thus established the energy balance of the system as its potential, by imposing on it the stationary condition, both displacements and yield strains appear as determined values. Consequently, what proposed is a means for verifying whether the ductility of prescribed designs is enough and the extent to which they are so, for known imposed loads. On the way for the theoretical development of the proposal, some important aspects have been found. Among these, the verification that the conditions for the ultimate state reached under the elastoplastic energy balance fulfills the conditions prescribed for the ultimate load state predicted through the ultimate load theorems, assuring, therefore, that the determinate solution -unicity of the elastic problemcoincides with the unicity ultimate load theorem, determining as well which equilibrium system and which collapse shape are linked to it, being these two last aspects unaffordable by the ultimate load theorems, that make sure only which is the value of the ultimate load leading to collapse. Another aspect is based on the particular case in which the yield surface of the system is flat -i.e. expressed under a linear expression-, turning out infinite the equilibrium possibilities for one determined collapse shape, which is the basis of, apparently, deciding at own free will the yield distribution in beams and arches. From the foresaid approach, is then found that there is an inherent condition in any system, once defined internal constitutive laws, which allows it arrive at the beginning of the ultimate state or collapse without any yield strain demand, reaching the collapse simultaneously for all regions that have come to their ultimate strength. In a certain way, it would appear to be a fragile collapse. In such a case case, the system fully keeps until the end its ductility, and such a state acts as a canonical representative of any other statically determined solution having the same internal design criteria that could be posed for the that same structure. The extent to which a design is closer to or farther from the canonical solution, the ductility demand of the system to verify the ultimate load will be higher or lower. The solutions being far in excess from the canonical solution, will not verify the ultimate state due to lack of ductility: the demand for yield strains of any yielded region will be beyond its capacity, and a shortcoming ultimate load by lack of ductility will appear, lower than the expected by mere equilibrium. For determining the yield strains of plastic hinges, a Boundary Element Method based model has been used, leading to a continuous displacement field -therefore, for strains and stresses as well- even if cracks on the boundary are present. An important aspect is that a remarkable difference is found in the rotation capacity between plastic hinges in reinforced concrete with or without shear. For masonry hinges, such difference appears when dealing with the eccentricity of axial forces -related to their relative value of compression- on the section, where differences between yield regions under high or low relative compressions are remarkable. On the other hand, although in a certain secondary manner, serviceability conditions impose limits to the previous ultimate load stated wanted too. Yield means always big strains and deformations, locally and globally. Such a thing imposes, for serviceability states, that if a yielded region is associated with too large cracking for the environmental conditions, the predicted design will be unsuitable due to this. Furthermore, displacements must be restricted under certain severe limits that restrain the possibilities for a free design. Especially in building structures, active displacements are a critical factor when chosing one or another solution. Then, to the limits due to ductility reasons, other limits dealing with serviceability conditions shoud be added. In the foresaid way, both considering ductility and serviceability conditions in every case, the results for ultimate load and serviceability to which every design decision will lead can be bounded. This means that, once the limits are known, it is possible to bound which a priori designs will fulfill for sure the prescribed ductility and serviceability conditions, and the extent to wich they will be fulfilled, And, in case they were not, which corrections must be performed in the previous design so that it will. Finally, from the consequences derived through what studied, several study and experimental fields are proposed, in order to achieve a completeness and practical expansion of the obtained results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this research is to promote the use of G.R.P. as a structural material. In the past, the use of G.R.P. has been confined to non-load carrying applications. Such uses are still rapidly increasing but in addition significant changes have been made during the last decade in the development of semi-structural and now even fully structural applications. Glass-reinforced plastic is characterized by a high strength but a relatively low modulus of elasticity. For this reasona G.R.P. structure can expect to show large deformations as a result of which the individual structural members will fail under load due to a loss of stability rather than approaching the ultimate strength of the material. For this reason the selection of the geometrical shapes of G.R.P. structural elements is considered to be an important factor in designing G.R.P. structures. The first chapter of this thesis deals with a general review of the theoretical and experimental methods used to describe the structural properties of G.R.P. The research programme includes five stages dealing with the structural behaviour of G.R.P. The first stage (Chapter 2) begins with selecting and designing an optimum box beam cross-section which gives the maximum flexural and torsional rigidity. The second stage of investigation (Chapter 3) deals with beam to beam connections. A joint was designed and manufactured with different types of fasteners used to connect two beam units. A suitable fastener was selected and the research extended to cover the behaviour of long span beams using multiple joints. The third part of the investigation includes a study of the behaviour of box beams subjected to combined bending, shear and torsion. A special torque rig was developed to perform the tests. Creep deformation of 6 m span G.R.P. was investigated as the fourth stage under a range of loading conditions. As a result of the phenomenon of post buckling behaviour exhibited in the compression flange during testing of box beams during earlier stages of the investigation it was decided to consider this phenomenon in more detail in the final stage of the investigation. G.R.P. plates with different fibre orientation were subjected to uniaxial compression and tested up to failure. In all stages of the investigation theoretical predictions and experimental results were compared and generally good correlation between theory and experimental data was observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis examines experimentally and theoretically the behaviour and ultimate strength of rectangular reinforced concrete members under combined torsion, shear and bending. The experimental investigation consists of the test results of 38 longitudinally and transversely reinforced concrete beams subjected to combined loads, ten beams of which were tested under pure torsion and self-weight. The behaviour of each test beam from application of the first increment of load until failure is presented. The effects of concrete strength, spacing of the stirrups, the amount of longitudinal steel and the breadth of the section on the ultimate torsional capacity are investigated. Based on the skew-bending mechanism, compatibility, and linear stress-strain relationship for the concrete and the steel, simple rational equations are derived for the three principal modes of failure for the following four types of failure observed in the tests: TYPE I Yielding the reinforcement, at failure, before crushing the concrete. TYPE II Yielding of the web steel only, at failure, before crushing the concrete. TYPE III Yielding of the longitudinal steel only, at failure, before crushing the concrete. TYPE IV Crushing of the concrete, at failure, before yielding of any of the reinforcement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work constitutes a study of the strength of mild steel fillet welds subject to static loading, and the behaviour of flange welded beam-column connections under combined bending and shear. Tests are conducted on short welds in the as-welded and stress relieved conditions, and also on full-size beam-column connections. It is shown that welds under compression have a lower strength than when under tension. Failure of the fillet weld is initiated at the weld root, the important factor controlling the initiation being weld ductility. The greater the residual stress, the lower the weld ductility and ultimate strength. Thermal stress relieving increases strength by as much as 30%. Weld failure plane is rarely at the throat and varies from 0° to 45° depending upon loading condition. Failure plane average stresses are related by a circular function which is expressed in terms of externally applied forces at limit state. The tension weld of a flange-welded beam-column connection always fails before the compression weld. The shear load sharing between the welds is a complex function of elastic compression of the web, elastic/plastic deformation of the flanges, load/deformation characteristics, and the type of load application. Bearing forces between the compression flange and column face produce low level bearing stresses and frictional forces which make a negligible contribution to shear load resistance. Three modes of connection failure are possible; 'end mode', 'bending mode' and 'shear mode', with a sudden change taking place between the two latter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reported in this thesis are test results of 37 eccentrically prestressed beams with stirrups. Single variable parameters were investigated including the prestressing force, the prestressing steel area, the concrete strength, the aspect ratio h/b and the stirrups size and spacing. Interaction of bending, torsion and shear was also investigated by testing a series of beams subjected to varying bending/torsional moment ratios. For the torsional strength an empirical expression of linear format is proposed and can be rearranged in a non-dimensional interaction form: T/To+V/Vo+M/Mo+Ps/Po+Fs/Fo=Pc2/Fsp. This formula which is based on an average experimental steel stress lower than the yield point is compared with 243 prestressed beams containing ' stirrups, including the author's test beams, and good agreement is obtained. For the theoretical analysis of the problem of torsion combined with bending and shear in concrete beams with stirrups, the method of torque-friction is proposed and developed using an average steel stress. A general linear interaction equation for combined torsion with bending and/or shear is proposed in the following format: (fi) T/Tu=1 where (fi) is a combined loading factor to modify the pure ultimate strength for differing cases of torsion with bending and/or shear. From the analysis of 282 reinforced and prestressed concrete beams containing stirrups, including the present investigation, good agreement is obtained between the method and the test results. It is concluded that the proposed method provides a rational and simple basis for predicting the ultimate torisional strength and may also be developed for design purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work studied the immiscible blend of elastomeric poly(methyl methacrylate) (PMMA) with poly(ethylene terephthalate) (PET) bottle grade with and without the use of compatibilizer agent, poly(methyl methacrylate-co-glycidyl methacrylate - co-ethyl acrylate) (MGE). The characterizations of torque rheometry, melt flow index measurement (MFI), measuring the density and the degree of cristallinity by pycnometry, tensile testing, method of work essential fracture (EWF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed in pure polymer and blends PMMA/PET. The rheological results showed evidence of signs of chemical reaction between the epoxy group MGE with the end groups of the PET chains and also to the elastomeric phase of PMMA. The increase in the concentration of PET reduced torque and adding MGE increased the torque of the blend of PMMA/PET. The results of the MFI also show that elastomeric PMMA showed lower flow and thus higher viscosity than PET. In the results of picnometry observed that increasing the percentage of PET resulted in an increase in density and degree crystallinity of the blends PMMA/PET. The tensile test showed that increasing the percentage of PET resulted in an increase in ultimate strength and elastic modulus and decrease in elongation at break. However, in the phase inversion, where the blend showed evidence of a co-continuous morphology and also, with 30% PET dispersed phase and compatibilized with 5% MGE, there were significant results elongation at break compared to elastomeric PMMA. The applicability of the method of essential work of fracture was shown to be possible for most formulations. And it was observed that with increasing elastomeric PMMA in the formulations of the blends there was an improvement in specific amounts of essential work of fracture (We) and a decrease in the values of specific non-essential work of fracture (βWp)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: This study evaluated the ultimate tensile strength of a tissue conditioner without nystatin incorporation (GI - control group) and the same tissue conditioner modified by the addition of nystatin in two concentrations: GII - 500,000 International Units (U) and GIII - 1,000,000 U, in which each milligram of the medicament corresponded to 6079 U. Materials and Methods: Dumbbell-shaped specimens (N = 7) with a central cross-sectional area of 33 × 6 × 3 mm were produced for the three experimental groups. After polymerization following manufacturer's instructions, specimens were immersed in distilled water at 37°C for either 24 hours or 7 days and then tested in tension in the MTS 810 at 40 mm/minute. Data were analyzed by two-way ANOVA followed by Tukey's test, at 95% level of confidence. Results: The means (force-grams (gf) ± standard deviation) of the ultimate tensile strength were: GI - 634.29 ± 122.80; GII - 561.92 ± 133.56; and GIII - 547.30 ± 73.47 for 24-hour storage, and GI - 536.68 ± 54.71; GII - 467.50 ± 143.51; and GIII - 500.62 ± 159.76 for 7-day storage. There were no statistically significant differences among the three experimental groups (p > 0.05). The ultimate tensile strength means of all experimental groups after 7 days were significantly lower than those observed after 24 hours (p = 0.04). Conclusions: The results of this study suggest that the addition of nystatin into the tissue conditioner investigated in concentrations below 1,000,000 U did not affect its ultimate tensile strength. Copyright © 2006 by The American College of Prosthodontists.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The application of ultrasound waves with a conventional dental ultrasonic scaler on glass ionomer cements surface accelerated initial setting reaction and improved the mechanical properties. Objective: This study evaluated the ultimate tensile strength of glass ionomer cements after ultrasonic excitation and different water storage times. Material and method: Twelve specimens of each material (Fuji IX GP, Ketac Molar Easymix and Vitremer) were prepared, and six of each received a 30-second ultrasound application during initial setting of the cements. After storage of the 24 hours or 30 days, the specimens were sectioned into stick to microtensile testing and the mean ultimate tensile strength values were submitted to Welch’s ANOVA and Tamhane’s test. Result: The results showed that the Vitremer presented the highest mean tensile strength. The chemically set Fuji IX GP presented significantly higher mean tensile strength after 30 days than after 24 hours of storage (p < 0.05). At 24 hours, the ultrasonically set Fuji IX GP presented significantly higher mean tensile strength than their counterparts set under standard conditions (p < 0.05). Conclusion: Treatment with ultrasound increased the tensile strength of Fuji IX GP in the early period of maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an experimental analysis of the confinement effects in steel-concrete composite columns regarding two parameters: concrete compressive strength and column slenderness. Sixteen concrete-filled steel tubular columns with circular cross section were tested under axial loading. The tested columns were filled by concrete with compressive strengths of 30, 60. 80, and 100 MPa, and had length/diameter ratios of 3, 5, 7, and 10. The experimental values of the columns` ultimate load were compared to the predictions of 4 code provisions: the Brazilian Code NBR 8800:2008, Eurocode 4 (EN 1994-1-1:2004), AINSI/AISC 360:2005, and CAN/CSA S16-01:2001. According to the results, the load capacity of the composite columns increased with increasing concrete strength and decreased with increasing length/diameter ratio. In general, the code provisions were highly accurate in the prediction of column capacity. Among them, the Brazilian Code was the most conservative, while Eurocode 4 presented the values closest to the experimental results. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method was developed for breaking high strength prestressed cable. The old method used an aluminum oxide grit packed into a special gripping jaw. The new method uses aluminum shims wrapped around the cable and then is gripped with a V-grip. The new method gives nearly 100% "good breaks" on the cable compared to approximately 10% good breaks with the old method. In addition, the new cable breaking method gives higher ultimate tensile strengths, is more reproducible, is quicker, cleaner and easier on equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method was developed for breaking high strength prestressed cable. The old method used an aluminum oxide grit packed into a special gripping jaw. The new method uses aluminum shims wrapped around the cable and then is gripped with a V-grip. The new method gives nearly 100% "good breaks" on the cable compared to approximately 10% good breaks with the old method. In addition, the new cable breaking method gives higher ultimate tensile strengths, is more reproducible, is quicker, cleaner and easier on equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A role for gut hormone in bone physiology has been suspected. We evidenced alterations of microstructural morphology (trabecular and cortical) and bone strength (both at the whole-bone - and tissue-level) in double incretin receptor knock-out (DIRKO) mice as compared to wild-type littermates. These results support a role for gut hormones in bone physiology. INTRODUCTION: The two incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), have been shown to control bone remodeling and strength. However, lessons from single incretin receptor knock-out mice highlighted a compensatory mechanism induced by elevated sensitivity to the other gut hormone. As such, it is unclear whether the bone alterations observed in GIP or GLP-1 receptor deficient animals resulted from the lack of a functional gut hormone receptor, or by higher sensitivity for the other gut hormone. The aims of the present study were to investigate the bone microstructural morphology, as well as bone tissue properties, in double incretin receptor knock-out (DIRKO) mice. METHODS: Twenty-six-week-old DIRKO mice were age- and sex-matched with wild-type (WT) littermates. Bone microstructural morphology was assessed at the femur by microCT and quantitative X-ray imaging, while tissue properties were investigated by quantitative backscattered electron imaging and Fourier-transformed infrared microscopy. Bone mechanical response was assessed at the whole-bone- and tissue-level by 3-point bending and nanoindentation, respectively. RESULTS: As compared to WT animals, DIRKO mice presented significant augmentations in trabecular bone mass and trabecular number whereas bone outer diameter, cortical thickness, and cortical area were reduced. At the whole-bone-level, yield stress, ultimate stress, and post-yield work to fracture were significantly reduced in DIRKO animals. At the tissue-level, only collagen maturity was reduced by 9 % in DIRKO mice leading to reductions in maximum load, hardness, and dissipated energy. CONCLUSIONS: This study demonstrated the critical role of gut hormones in controlling bone microstructural morphology and tissue properties.