943 resultados para two-dimensional coupled-wave theory
Resumo:
In this letter we discuss the (2 + 1)-dimensional generalization of the Camassa-Holm equation. We require that this generalization be, at the same time, integrable and physically derivable under the same asymptotic analysis as the original Camassa-Holm equation. First, we find the equation in a perturbative calculation in shallow-water theory. We then demonstrate its integrability and find several particular solutions describing (2 + 1) solitary-wave like solutions. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We demonstrate that the generating functionals for two-dimensional models with two real scalar fields, one interacting with an external electromagnetic field and the other with coupling terms but without external fields, can be reduced to the case of the free-particle propagator when quasistatic solutions for this theory are used. © 1991 The American Physical Society.
Resumo:
Comprehensive two-dimensional gas chromatography (GC x GC) is a powerful technique that provides excellent separation and identification of analytes in highly complex samples with considerable increase in GC peak capacities. However, since second dimension analyses are very fast, detectors with a rapid acquisition rate are required. Over the last years, quite a number of studies have discussed the potential and limitations of the combination GC x GC with a variety of quadrupole mass spectrometers. The present research focuses on the evaluation of qMS effectiveness at a 10,000-amu/s scan speed and 20-Hz scan frequency for the identification (full scan mode acquisition-TIC) and quantification (extracted ion chromatogram) of target pesticide residues in tomato samples. The following MS parameters have been evaluated: number of data points per peak, mass spectrum quality, peak skewing, and sensitivity. The validated proposed GC x GC/qMS method presented satisfactory results in terms of repeatability (coefficient of variation lower than 15%), accuracy (84-117%), and linearity (ranging from 25 to 500 ng/g), while significant enhancement in sensitivity was observed (a factor of around 10) under scan conditions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Within the superfield approach, we discuss the two-dimensional noncommutative super-QED. Its all-order finiteness is explicitly shown. Copyright (C) EPLA, 2012
Resumo:
[EN]This paper is concerned with the vibration isolation efficiency analysis of total or partially buried thin walled wave barriers in poroelastic soils. A two-dimensional time harmonic model that treats soils and structures in a direct way by combining appropriately the conventional Boundary Element Method (BEM), the Dual BEM (DBEM) and the Finite Element Method es developed to this aim.
Resumo:
Fully controlled liquid injection and flow in hydrophobic polydimethylsiloxane (PDMS) two-dimensional microchannel arrays based on on-chip integrated, low-voltage-driven micropumps are demonstrated. Our architecture exploits the surface-acoustic-wave (SAW) induced counterflow mechanism and the effect of nebulization anisotropies at crossing areas owing to lateral propagating SAWs. We show that by selectively exciting single or multiple SAWs, fluids can be drawn from their reservoirs and moved towards selected positions of a microchannel grid. Splitting of the main liquid flow is also demonstrated by exploiting multiple SAW beams. As a demonstrator, we show simultaneous filling of two orthogonal microchannels. The present results show that SAW micropumps are good candidates for truly integrated on-chip fluidic networks allowing liquid control in arbitrarily shaped two-dimensional microchannel arrays.
Resumo:
In this paper we present a tool to carry out the multifractal analysis of binary, two-dimensional images through the calculation of the Rényi D(q) dimensions and associated statistical regressions. The estimation of a (mono)fractal dimension corresponds to the special case where the moment order is q = 0.
Resumo:
The linearized solution for the two-dimensional flow over an inlet of general form has been derived, assuming incompressible potential flow. With this theory suction forces at sharp inlet lips can be estimated and ideal inlets can be designed.
Resumo:
"June 1980."
Resumo:
The marsh porosity method, a type of thin slot wetting and drying algorithm in a two-dimensional finite element long wave hydrodynamic model, is discussed and analyzed to assess model performance. Tests, including comparisons to simple examples and theoretical calculations, examine the effects of varying the marsh porosity parameters. The findings demonstrate that the wetting and drying concept of marsh porosity, often used in finite element hydrodynamic modeling, can behave in a more complex manner than initially expected.
Resumo:
Two-dimensional optical power distribution of the out-coupled radiation from UV-inscribed tilted fibre Bragg gratings (TFBGs) in multimode fibre (MMF) has been side-detected with high spatial/spectral resolution, showing a near-identical radiation mode profile to that measured from the fibre-end detection method. A comparative investigation of the radiation characteristics of TFBGs fabricated in singlemode fibre (SMF) and MMF clearly indicates that the radiation out-coupling is stronger and spatially more confined in MMF. The unique spatial-to-spectral encoding property of the coupling mechanism offers potential application in low-cost WDM devices.
Resumo:
Two-dimensional optical power distribution of the out-coupled radiation from UV-inscribed tilted fibre Bragg gratings (TFBGs) in multimode fibre (MMF) has been side-detected with high spatial/spectral resolution, showing a near-identical radiation mode profile to that measured from the fibre-end detection method. A comparative investigation of the radiation characteristics of TFBGs fabricated in singlemode fibre (SMF) and MMF clearly indicates that the radiation out-coupling is stronger and spatially more confined in MMF. The unique spatial-to-spectral encoding property of the coupling mechanism offers potential application in low-cost WDM devices.
Resumo:
Two-dimensional optical power distribution of the out-coupled radiation from UV-inscribed tilted fibre Bragg gratings (TFBG) in multimode fibre (MMF) has been side-detected with high spatial spectral resolution, showing a near-identical radiation mode profile to that measured from the fibre-end detection method. A comparative investigation of the radiation characteristics of TFBGs fabricated in singlemode fibre (SMF) and MMF clearly indicates that the radiation out-coupling is stronger and spatially more confined in MMF. The unique spatial-to-spectral encoding property of the coupling mechanism offers potential application in low-cost WDM devices.
Resumo:
In this paper we establish, from extensive numerical experiments, that the two dimensional stochastic fire-diffuse-fire model belongs to the directed percolation universality class. This model is an idealized model of intracellular calcium release that retains the both the discrete nature of calcium stores and the stochastic nature of release. It is formed from an array of noisy threshold elements that are coupled only by a diffusing signal. The model supports spontaneous release events that can merge to form spreading circular and spiral waves of activity. The critical level of noise required for the system to exhibit a non-equilibrium phase-transition between propagating and non-propagating waves is obtained by an examination of the \textit{local slope} $\delta(t)$ of the survival probability, $\Pi(t) \propto \exp(- \delta(t))$, for a wave to propagate for a time $t$.