999 resultados para trypanocidal activity
Resumo:
A doença de Chagas é uma doença tropical infecciosa e negligenciada responsável por um grande número de pessoas infectadas e em risco de infecção, principalmente nas regiões pobres da América Latina. No momento, apenas duas drogas, Benzonidazol e Nifurtimox, estão disponíveis para o tratamento da doença de Chagas, mas são ineficazes por apresentarem baixa taxa de cura. O Megazol é um importante representante da classe dos nitroimidazóis e é uma alternativa promissora devido ao seu potencial tripanocida com um perfil superior de ação quando comparado ao tratamento disponível. No entanto, o Megazol não é utilizado clinicamente uma vez que possui atividade mutagênica e carcinogênica relatada. O Instituto de Tecnologia em Fármacos (Farmanguinhos) desenvolveu três análogos do Megazol: PTAL 05-02 (3-amino-5-(1-metil-5-nitro-1H-imidazol-2-il)-1H-1,2,4-triazol), PAMT 09 (2-amino-N-(1-metil-4-nitro-1H-imidazol-5-il)-5-(trifluorometil)-1H-1,2,4-triazol) e PTAL 04-09 (1-(1-metil-4-nitro-1H-imidazol-5-il)-1H-pirazol). O objetivo deste trabalho é apresentar novas moléculas análogas do Megazol com atividade tripanocida, desenvolvidas a partir de estratégias racionais de desenvolvimento de substâncias bioativas ao manter o perfil farmacodinâmico do Megazol enquanto tenta diminuir ou remover o efeito genotóxico. Testes genotóxicos na avaliação segura de novas substâncias bioativas foram utilizados, de acordo com as diretrizes da OECD. O teste da Salmonella/microssoma foi utilizado na avaliação mutagênica e citotóxica, utilizando linhagens de Salmonella enterica sorovar Typhimurium, deficientes e supercompetentes na síntese de enzimas nitroredutase e acetiltransferase. O análogo PAMT 09 não foi mutagênico em nenhuma concentração e linhagem utilizada. Os análogos PTAL 05-02 e PTAL 04-09 foram mutagênicos, na ausência de S9 mix, para a linhagem TA98/1,8-DNP6. Na avaliação de citotoxicidade, os três análogos foram citotóxicos, independente de metabolização exógena S9 mix. O teste do micronúcleo, utilizando células de macrófago de rato, foi realizado para a avaliação genotóxica dos análogos do Megazol. Os três análogos foram capazes de induzir a formação de micronúcleos e apresentaram efeito citotóxico.
Resumo:
Background/Aim: Chagas` disease is caused by Trypanosoma cruzi and occurs in most Latin American countries. The protozoan may colonize the central nervous system (CNS) of immune-compromised human hosts, thus causing neuronal disorders. Systemic control of the intracellular forms of the parasite greatly depends on the establishment of a TH1 response and subsequent nitric oxide (NO) release. At the CNS, it is known that low concentrations of NO promote neuronal survival and growth, while high concentrations exert toxic effects and neuron death. Accounting for NO production by astrocytes is the glia-derived factor S100 beta, which is overproduced in some neurodegenerative diseases. In the current work, we studied the expression of NO, interferon (IFN)-gamma and S100 beta in the spinal cord tissue of IL-12p40KO mice infected with T. cruzi, a model of neurodegenerative process. Methods: IL-12p40KO and wild-type (WT) female mice infected with T. cruzi Sylvio X10/4 (10(5) trypomastigotes, intraperitoneally) were euthanized when IL-12p40KO individuals presented limb paralysis. Spinal cord sections were submitted to immunohistochemical procedures for localization of neurofilament, laminin, nitrotyrosine, NO synthases (NOS), IFN-gamma and S100 beta. The total number of neurons was estimated by stereological analysis and the area and intensity of immunoreactivities were assessed by microdensitometric/morphometric image analysis. Results: No lesion was found in the spinal cord sections of WT mice, while morphological disarrangements, many inflammatory foci, enlarged vessels, amastigote nests and dying neurons were seen at various levels of IL-12p40KO spinal cord. Compared to WT mice, IL-12p40KO mice presented a decrement on total number of neurons (46.4%, p<0.05) and showed increased values of immunoreactive area for nitrotyrosine (239%, p<0.01) and NOS (544%, p<0.001). Moreover, the intensity of nitrotyrosine (16%, p<0.01), NOS (38%, p<0.05) and S100 beta (21%, p<0.001) immunoreactivities were also augmented. No IFN-gamma labeled cells were seen in WT spinal cord tissue, contrary to IL-12p40KO tissue that displayed inflammatory infiltrating cells and also some parenchymal cells positively labeled.Conclusion: We suggest that overproduction of NO may account for neuronal death at the spinal cord of T. cruzi-infected IL-12p40KO mice and that IFN-gamma and S100 beta may contribute to NOS activation in the absence of IL-12. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers. whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms. Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC). the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of the study was to investigate the anti-trypanocidal activities of natural chromene and chromene derivatives. Five chromenes were isolated from Piper gaudichaudianum and P. aduncum, and a further seven derivatives were prepared using standard reduction, methylation and acetylation procedures. These compounds were assayed in vitro against epimastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. The results showed that the most of the compounds, especially those possessing electron-donating groups as substituents on the aromatic ring, showed potent trypanocidal activity. The most active compound, [(2S)-methyl-2-methyl-8-(3 ``-methylbut-2 ``-enyl)-2-(4`-methylpent-3`-enyl)-2H-chromene-6-carboxylate], was almost four times more potent than benznidazole (the positive control) and showed an IC50 of 2.82 mu M. The results reveal that chromenes exhibit significant anti-trypanocidal activities and indicate that this class of natural product should be considered further in the development of new and more potent drugs for use in the treatment of Chagas disease.
Resumo:
The anchoring of K[Ru-III(edta)(Cl)] on poly(amidoamine) dendrimers (PAMAM of three generations G(x)/Ru (x = 0, 2 and 3)) through a peptide type bond yielded the aquo species, [Ru-III(edta)(H2O)] on dendrimer surface, and upon NO exposure, yielded their nitrosyl analogues, Gx/RuNO. Characterization of these compounds by elemental analysis, and a UV-vis, IR and C-13 NMR spectroscopies indicated the immobilization of 4,12 and 29 molecules of [Ru-III(edta)(H2O)](-) or of the nitrosyl complex [Ru(II)edta)NO] on the dendrimer surface for G(X) = 0, 2 and 3, respectively. For each complex the electrochemical spectrum presented only one redox process with redox potential values of -0.20 and -0.32 V(vs SCE) attributed to the Ru/Run and NO+/NO0 couples in G(x)/Ru and G./RuNO, respectively. The one-electron reduction of Gx/RuNO` generates Gx/RuNOo, which undergoes aquation with a k(-NO) of 2.1 +/- 0.7 x 10(-3) s(-1) (pH 1.0, mu = 0.2 mol/L, CF3COOH/NaCF3COO, 25 degrees C). The Gx/RuNO species induced a relaxing effect in aortic rings denuded of endothelium and exhibited in vitro assay trypanocidal activity. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The ruthenium NO donors of the group trans-[Ru(NO)(NH(3))(4)L](n+), where the ligand (L) is N-heterocyclic H(2)O, SO(3)(2 -), or triethyl phosphite, are able to lyse Trypanosoma cruzi in vitro and in vivo. Using half-maximal (50%) inhibitory concentrations against bloodstream trypomastigotes (IC(50)(try)) and cytotoxicity data on mammalian V-79 cells (IC(50)(V79)), the in vitro therapeutic indices (TIs) (IC(50)(V79)/IC(50)(try)) for these compounds were calculated. Compounds that exhibited an in vitro TI of >= 10 and trypanocidal activity against both epimastigotes and trypomastigotes with an IC(50)(try/epi) of <= 100 mu M were assayed in a mouse model for acute Chagas` disease, using two different routes (intraperitoneal and oral) for drug administration. A dose-effect relationship was observed, and from that, the ideal dose of 400 nmol/kg of body weight for both trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) (isn, isonicotinamide) and trans-[Ru(NO)(NH3) 4imN](BF4) 3 (imN, imidazole) and median (50%) effective doses (ED50) of 86 and 190 nmol/kg, respectively, were then calculated. Since the 50% lethal doses (LD(50)) for both compounds are higher than 125 mu mol/kg, the in vivo TIs (LD(50)/ED(50)) of the compounds are 1,453 for trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and 658 for trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3). Although these compounds exhibit a marked trypanocidal activity and are able to react with cysteine, they exhibit very low activity in T. cruzi -glycosomal glyceraldehyde-3-phosphate dehydrogenase tests, suggesting that this enzyme is not their target. The trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) compounds are able to eliminate amastigote nests in myocardium tissue at 400-nmol/kg doses and ensure the survival of all infected mice, thus opening a novel set of therapies to try against trypanosomatids.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The synthesis of mutual prodrugs of nitrofurazone with primaquine, using specific and nonspecific spacer groups, has been previously attempted seeking selective antichagasic agents. The intermediate reaction product, hydroxymethylnitrofurazone (NFOH-121), was isolated and tested in LLC-MK2 culture cells infected with trypomastigotes forms of Trypanosoma cruzi showing higher trypanocidal activity than nitrofurazone and benznidazol in all stages. The mutagenicity tests showed that the prodrug was less toxic than the parent drug. Degradation assays were carried out in pH 1.2 and 7.4. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Plants synthesise a vast repertoire of chemicals with various biological activities. Brazilian enormous botanical diversity facilitates the development of novel ethical drugs for the treatment of diseases in humans. Objective: To present therapeutic patent applications comprising Brazilian native plants published in the 2003 - 2008 period in light of legal aspects of patentability of biodiversity and public health concerns. Methods: Therapeutic patent applications related to Brazilian medicinal plants available at both the European Patent Office and the Brazilian National Institute of industrial Property databases were reviewed. Results/conclusion: Twenty-five patents are presented, most of which concern inflammatory, allergic, parasitic, infectious or digestive diseases, including extracts from Carapa guianensis, Copaifera genus, Cordia verbenacea, Erythrina mulungu, Physalis angulata and other pharmaceutical compositions with antileishmanial, antimalarial or trypanocidal activity. Brazilian research centres and universities are responsible for most of these inventions.
Resumo:
American trypanosomiasis (Chagas' disease) is an endemic parasitic disease afflicting more than 20 million people in Latin America. Currently, therapy is unsatisfactory and only two drugs are available. Primaquine, an antimalarial drug, has trypanocidal activity. Dipeptide derivatives of primaquine, Phe-Arg-PQ, Lys-Arg-PQ, and Phe-Ala-PQ, were synthesized. The choice of the peptides was based on the primary specificity of cruzipain, the major cysteine proteinase from T. cruzi. The prodrugs obtained were tested on the LLC-MK2 cell culture infected with trypomastigotes forms of T. cruzi Phe-Arg-PQ, Lys-Arg-PQ, and Phe-Ala-PQ were active in all stages.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the study was to investigate the anti-trypanocidal activities of natural chromene and chromene derivatives. Five chromenes were isolated from Piper gaudichaudianum and P. aduncum, and a further seven derivatives were prepared using standard reduction, methylation and acetylation procedures. These compounds were assayed in vitro against epimastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. The results showed that the most of the compounds, especially those possessing electron-donating groups as substituents on the aromatic ring, showed potent trypanocidal activity. The most active compound, [(2S)-methyl-2-methyl-8-(3″-methylbut-2″-enyl)-2- (4′-methylpent-3′-enyl)-2H-chromene-6-carboxylate], was almost four times more potent than benznidazole (the positive control) and showed an IC 50 of 2.82 μM. The results reveal that chromenes exhibit significant anti-trypanocidal activities and indicate that this class of natural product should be considered further in the development of new and more potent drugs for use in the treatment of Chagas disease. © 2008 Pharmaceutical Society of Japan.
Design, synthesis and biological evaluation of new aryl thiosemicarbazone as antichagasic candidates
Resumo:
The present work reports on the synthesis, biological assaying and docking studies of a series of 12 aryl thiosemicarbazones, which were planned to act over two main enzymes, cruzain and trypanothione reductase. These enzymes are used as targets of trypanocidal activity in Chagas disease control with a minimal mutagenic profile. Three p-nitroaromatic thiosemicarbazones showed high activity against Trypanosoma cruzi in in vitro assays (IC50 < 57 μM), and no mutagenic profile was observed in micronucleous tests. Although the in vitro inhibition test showed that 10-μM doses of eight compounds inhibited cruzain activity, no correlation was found between cruzain inhibition and trypanocidal activity. © 2013 Elsevier Masson SAS. All rights reserved.