995 resultados para traveling wave solutions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

High-drag states produced in stratified flow over a 2D ridge and an axisymmetric mountain are investigated using a linear, hydrostatic, analytical model. A wind profile is assumed where the background velocity is constant up to a height z1 and then decreases linearly, and the internal gravity-wave solutions are calculated exactly. In flow over a 2D ridge, the normalized surface drag is given by a closed-form analytical expression, while in flow over an axisymmetric mountain it is given by an expression involving a simple 1D integral. The drag is found to depend on two dimensionless parameters: a dimensionless height formed with z_1, and the Richardson number, Ri, in the shear layer. The drag oscillates as z_1 increases, with a period of half the hydrostatic vertical wavelength of the gravity waves. The amplitude of this modulation increases as Ri decreases. This behaviour is due to wave reflection at z_1. Drag maxima correspond to constructive interference of the upward- and downward-propagating waves in the region z < z_1, while drag minima correspond to destructive interference. The reflection coefficient at the interface z = z_1 increases as Ri decreases. The critical level, z_c, plays no role in the drag amplification. A preliminary numerical treatment of nonlinear effects is presented, where z_c appears to become more relevant, and flow over a 2D ridge qualitatively changes its character. But these effects, and their connection with linear theory, still need to be better understood.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wave solutions to a mechanochemical model for cytoskeletal activity are studied and the results applied to the waves of chemical and mechanical activity that sweep over an egg shortly after fertilization. The model takes into account the calcium-controlled presence of actively contractile units in the cytoplasm, and consists of a viscoelastic force equilibrium equation and a conservation equation for calcium. Using piecewise linear caricatures, we obtain analytic solutions for travelling waves on a strip and demonstrate uiat the full nonlinear system behaves as predicted by the analytic solutions. The equations are solved on a sphere and the numerical results are similar to the analytic solutions. We indicate how the speed of the waves can be used as a diagnostic tool with which the chemical reactivity of the egg surface can be measured.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we establish the existence of standing wave solutions for quasilinear Schrodinger equations involving critical growth. By using a change of variables, the quasilinear equations are reduced to semilinear one. whose associated functionals are well defined in the usual Sobolev space and satisfy the geometric conditions of the mountain pass theorem. Using this fact, we obtain a Cerami sequence converging weakly to a solution v. In the proof that v is nontrivial, the main tool is the concentration-compactness principle due to P.L. Lions together with some classical arguments used by H. Brezis and L. Nirenberg (1983) in [9]. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Equações diferenciais de quarta ordem aparecem naturalmente na modelagem de oscilações de estruturas elásticas, como aquelas observadas em pontes pênseis. São considerados dois modelos que descrevem as oscilações no tabuleiro de uma ponte. No modelo unidimensional estudamos blow up em espaço finito de soluções de uma classe de equações diferenciais de quarta ordem. Os resultados apresentados solucionam uma conjectura apresentada em [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] e implicam a não existência de ondas viajantes com baixa velocidade de propagação em uma viga. No modelo bidimensional analisamos uma equação não local para uma placa longa e fina, suportada nas extremidades menores, livre nas demais e sujeita a protensão. Provamos existência e unicidade de solução fraca e estudamos o seu comportamento assintótico sob amortecimento viscoso. Estudamos ainda a estabilidade de modos simples de oscilação, os quais são classificados como longitudinais ou torcionais.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of applied magnetic fields on the traveling wave formed by the reaction of (ethylenediaminetetraacetato)cobalt(II) (Co(II)EDTA2-) and hydrogen peroxide have been studied using magnetic resonance imaging (MRI). It was found that the wave could be manipulated by applying pulsed magnetic field gradients to a sample contained in a vertical cylindrical tube in the 7.0 T magnetic field of the spectrometer. Transverse field gradients decelerated the propagation of the wave down the high-field side of the tube and accelerated it down the low-field side. This control of the wave propagation eventually promoted the formation of a finger on the low-field side of the tube and allowed the wave to be maneuvered within the sample tube. The origin of these effects is rationalized by considering the Maxwell stress arising from the combined homogeneous and inhomogeneous magnetic fields and the magnetic susceptibility gradient across the wave front.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 74J30, 34L30.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The generalized KP (GKP) equations with an arbitrary nonlinear term model and characterize many nonlinear physical phenomena. The symmetries of GKP equation with an arbitrary nonlinear term are obtained. The condition that must satisfy for existence the symmetries group of GKP is derived and also the obtained symmetries are classified according to different forms of the nonlinear term. The resulting similarity reductions are studied by performing the bifurcation and the phase portrait of GKP and also the corresponding solitary wave solutions of GKP
equation are constructed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many tissue level models of neural networks are written in the language of nonlinear integro-differential equations. Analytical solutions have only been obtained for the special case that the nonlinearity is a Heaviside function. Thus the pursuit of even approximate solutions to such models is of interest to the broad mathematical neuroscience community. Here we develop one such scheme, for stationary and travelling wave solutions, that can deal with a certain class of smoothed Heaviside functions. The distribution that smoothes the Heaviside is viewed as a fundamental object, and all expressions describing the scheme are constructed in terms of integrals over this distribution. The comparison of our scheme and results from direct numerical simulations is used to highlight the very good levels of approximation that can be achieved by iterating the process only a small number of times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traveling wave ion mobility mass spectrometry (TWIM-MS) is shown to be able to separate and characterize several isomeric forms of diterpene glycosides stevioside (Stv) and rebaudioside A (RebA) that are cationized by Na(+) and K(+) at different sites. Determination and characterization of these coexisting isomeric species, herein termed catiomers, arising from cationization at different and highly competitive coordinating sites, is particularly challenging for glycosides. To achieve this goal, the advantage of using CO2 as a more massive and polarizable drift gas, over N2 , was demonstrated. Post-TWIM-MS/MS experiments were used to confirm the separation. Optimization of the possible geometries and cross-sectional calculations for mobility peak assignments were also performed. Copyright © 2015 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complicated patterns showing various spatial scales have been obtained in the past by coupling Turing systems in such a way that the scales of the independent systems resonate. This produces superimposed patterns with different length scales. Here we propose a model consisting of two identical reaction-diffusion systems coupled together in such a way that one of them produces a simple Turing pattern of spots or stripes, and the other traveling wave fronts that eventually become stationary. The basic idea is to assume that one of the systems becomes fixed after some time and serves as a source of morphogens for the other system. This mechanism produces patterns very similar to the pigmentation patterns observed in different species of stingrays and other fishes. The biological mechanisms that support the realization of this model are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multidimensional spatiotemporal parametric simultons (simultaneous solitary waves) are possible in a nonlinear chi((2)) medium with a Bragg grating structure, where large effective dispersion occurs near two resonant band gaps for the carrier and second-harmonic field, respectively. The enhanced dispersion allows much reduced interaction lengths, as compared to bulk medium parametric simultons. The nonlinear parametric band-gap medium permits higher-dimensional stationary waves to form. In addition, solitons can occur with lower input powers than conventional nonlinear Schrodinger equation gap solitons. In this paper, the equations for electromagnetic propagation in a grating structure with a parametric nonlinearity are derived from Maxwell's equation using a coupled mode Hamiltonian analysis in one, two, and three spatial dimensions. Simultaneous solitary wave solutions are proved to exist by reducing the equations to the coupled equations describing a nonlinear parametric waveguide, using the effective-mass approximation (EMA). Exact one-dimensional numerical solutions in agreement with the EMA solutions are also given. Direct numerical simulations show that the solutions have similar types of stability properties to the bulk case, providing the carrier waves are tuned to the two Bragg resonances, and the pulses have a width in frequency space less than the band gap. In summary, these equations describe a physically accessible localized nonlinear wave that is stable in up to 3 + 1 dimensions. Possible applications include photonic logic and switching devices. [S1063-651X(98)06109-1].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We review recent developments in quantum and classical soliton theory, leading to the possibility of observing both classical and quantum parametric solitons in higher-dimensional environments. In particular, we consider the theory of three bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium this corresponds to the process of sum frequency generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. Potential applications include an ultrafast photonic AND-gate. The simplest quantum solitons or energy eigenstates (bound-state solutions) of the interacting field Hamiltonian are obtained exactly in three space dimensions. They have a point-like structure-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with the imposition of a momentum cut-off on the nonlinear couplings. The case of three-dimensional matter-wave solitons in coupled atomic/molecular Bose-Einstein condensates is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the quantum theory of three fields interacting via parametric and repulsive quartic couplings. This can be applied to treat photonic chi((2)) and chi((3)) interactions, and interactions in atomic Bose-Einstein condensates or quantum Fermi gases, describing coherent molecule formation together with a-wave scattering. The simplest two-particle quantum solitons or bound-state solutions of the idealized Hamiltonian, without a momentum cutoff, are obtained exactly. They have a pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with a momentum cutoff. The parametric quantum solitons have much more realistic length scales and binding energies than chi((3)) quantum solitons, and the resulting effects could potentially be experimentally tested in highly nonlinear optical parametric media or interacting matter-wave systems. N-particle quantum solitons and the ground state energy are analyzed using a variational approach. Applications to atomic/molecular Bose-Einstein condensates (BEC's) are given, where we predict the possibility of forming coupled BEC solitons in three space dimensions, and analyze superchemistry dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The new science of nonlinear atom optics and atom lasers is evolving rapidly. There are similarities between many related areas in modern photonic and atom optics, particularly at the mean-field level. In both cases we can often use classical nonlinear wave equations to describe classical solitons, vortices, and other nonlinear structure. Atom-molecular coupling can be used to play the role of second-harmonic generation. This leads to novel types of soliton. In addition, quantum effects at low densities are likely to be readily observable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Simultaneous solitary wave solutions for laser propagation in nonlinear parametric media with up to (3 + 1) dimensions are proved to exist. The combination of the large dispersion of a Bragg grating and the strong nonlinearity of chi((2)) optical material results in stable behavior with short interaction distances and low power requirements. The solutions are obtained by using the effective mass approximation to reduce the coupled propagation equations to those describing a dispersive parametric nonlinear waveguide, and are verified by solving the complete set of coupled band-gap equations numerically.