944 resultados para transistor elettrochimici organici, OECTs, PEDOT:PSS, sensori
Resumo:
This work presents the electro-optical characterization of metal-organic interfaces prepared by the Ion Beam Assisted Deposition (IBAD) method. IBAD applied in this work combines simultaneously metallic film deposition and bombardment with an independently controlled ion beam, allowing different penetration of the ions and the evaporated metallic elements into the polymer. The result is a hybrid, non-abrupt interface, where polymer, metal and ion coexists. We used an organic light emitting diode, which has a typical vertical-architecture, for the interface characterization: Glass/Indium Tin Oxide (ITO)/Poly[ethylene-dioxythiophene/poly{styrenesulfonicacid}]) (PEDOT:PSS) /Emitting Polymer/Metal. The emitting polymer layer comprised of the Poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (PFO) and the metal layer of aluminum prepared with different Ar(+) ion energies varying in the range from 0 to 1000 eV. Photoluminescence, Current-Voltage and Electroluminescence measurements were used to study the emission and electron injection properties. Changes of these properties were related with the damage caused by the energetic ions and the metal penetration into the polymer. Computer simulations of hybrid interface damage and metal penetration were confronted with experimental data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence and electroluminescence of PVK films doped with fac-[ClRe(CO)(3)(bpy)], bpy=2,2`-bipyridine, are investigated. Photoluminescence spectra of spin-coated PVK films (lambda(exc)=290 nm) exhibit a broad band centered at 405 nm. As the concentration of dopant increases, the polymer emission is quenched and a band at 555 nm appears (isosbestic point at 475 nm). In OLEDs with ITO/PEDOT:PSS/PVK/butylPBD/Al architecture doped with fac-[ClRe(CO)(3)(bpy)], the polymer host emission is completely quenched even at the lowest concentration of dopant. The electroluminescence spectra of the devices show that there is an efficient energy transfer from the host to the dopant, which exhibits a very intense emission at 580 nm. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We describe the optical and electrical characterization of a poly(p-phenylenevinylene) derivative: poly(2-dodecanoylsulfanyl-p-phenylenevinylene) (12COS-PPV). The electrical characterization was carried out on devices with the FTO\PEDOT:PSS\12COS-PPV/Al structure. Positive charge carrier mobility mu(h) of similar to 1.0 x 10(-6) cm(2) V(-1) s(-1) and barrier height phi of similar to 0.1 eV for positive charge carrier injection at the PEDOT:PSS/12COS-PPV interface were obtained using a thermionic injection model. FTO\PEDOT:P55\12COS-PPV/Ca devices exhibited green-yellow electroluminescence with maximum emission at lambda = 540 nm.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fabrication of optoelectronic devices requires the employment of at least one transparent electrode. Usually, commercially transparent electrodes have been made by deposition of indium tin oxide (ITO) films by RF-Sputtering technique. These commercial electrodes have sheet resistance of about 100 Ω/sq and optical transmittance of 77% at the wavelength of 550 nm. The poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) is an alternative material to fabricate transparent electrodes due to its high conductivity (about 600 S/cm) and solubility in water. Soluble conductive materials exhibits advantages for processing of electrode layers, however there is a disadvantage during devices fabrication once materials with the same solvent of the electrode material cannot be coated one over the other. Alternatively, organic/Silica hybrid materials prepared by sol-gel process allow producing bulks and films with high chemical durability. In order to obtain transparent electrodes with high chemical durability, we introduced a blended material comprising the high UV-VIS transparency of organic/Silica sol-gel material and a high conductivity polymer PEDOT:PSS. The organic/Silica sol was obtained using two different molar concentrations (1:1 and 4:1), of tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTS). Amounts of PEDOT:PSS solutions were added to the sol material, resulting in different weight fractions of sol and polymer. G:T/P:P were deposit onto glass substrates by spray-coating. In order to perform electrical characterization of the blended material, gold electrodes were thermally evaporated onto the films. The electrical characterization was performed using a Keithley 2410 source/meter unity and the optical characterization, using a Cary50 UV-Vis spectrophotometer. The absorption coefficient and electric conductivity of the different compositions blends, as function of the PEDOT:PSS concentration, were...
Resumo:
The development of new electroluminescence polymers for specific colour tuning in Polymer Light Emitting Devices (PLEDs) is currently one of the most important fields for organic electronics. This work reports a synthesis of a new electroluminescent polymer and the concomitant test as PLED emissive layer. The polymer, synthesised from fluorene, is poly(9,9`-n-dihexil-2,7-fluorenodiilvinylene-alt-2,5thiophene) or PFT The luminescence shows large bands with maxima around 480 nm in absorption and 560 nm in emission. The device was made in a three layer structure, with PEDOT:PSS as hole transport layer, PFT as emissive layer and butyl-PBD as electron transport layer. The electroluminescence spectrum shows a strong band peaked at 540 nm. For an applied voltage of 12 Volt, the brightness at normal angle of viewing is near 10 cd/m(2) and the luminous efficiency is of 0.01 lm/W. A discussion about carrier transport and the electroluminescence properties is made.
Resumo:
Ultra-thin (thicknesses of 50-90 nm) nanocomposite films of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm in diameter) and polyelectrolytes (doped polyaniline-PANI, poly-3,4-ethylenedioxy thiophene: polystyrene sulfonic acid-PEDOT:PSS, and sulfonated lignin-SL) are assembled layer-by-layer onto interdigitated microelectrodes aiming at to create novel nanostructured sensoactive materials for liquid media chemical sensors. The nanocomposites display a distinctive globular morphology with nanoparticles densely-packed while surrounded by polyelectrolytes. Due to the presence of np-CoFe2O4 the nanocomposites display low electrical conductivity according to impedance data. On the other hand, this apparent shortcoming turns such nanocomposites much more sensitive to the presence of ions in solution than films made exclusively of conducting polyelectrolytes. For example, the electrical resistance of np-CoFe2O4/PEDOT:PSS and PANI/SL/np-CoFe2O4/SL architectures has a 10-fold decrease when they are immersed in 20 mmol. L-1 NaCl solution. Impedance spectra fitted with the response of an equivalent circuit model suggest that the interface created between nanoparticles and polyelectrolytes plays a major role on the nanocomposites electrical/dielectrical behavior. Since charge transport is sensitive to nanoparticle-polyelectrolyte interfaces as well as to the physicochemical conditions of the environment, the np-CoFe2O4-based nanocomposites can be used as sensing elements in chemical sensors operated under ac regime and room temperature.
Resumo:
We present the synthesis of a copolymer structure, poly(9,9′-n-di-hexyl-2,7-fluorene-alt-2,5- bithiophene), referred to herein as LaPPS43, and its physico-chemical characterization. Thin films of this polymer mixed with phenyl-C61-butyric acid methyl ester (PCBM) were used as the active layer in photovoltaic devices using the ITO/PEDOT:PSS/LaPPS43: PCBM/Ca/Al bulk heterojunction structure. The devices of different active layer thicknesses were electrically studied using J-V curves and the Photo-Celiv technique. The obtained results show that LaPPS43 combined with PCBM is a promising system for photovoltaic devices. Device performance is discussed in terms of the mean drift distance x for charge carriers. Photophysical data showed that the excitonic species are all localized in the aggregated forms. The mechanism of exciton formation and dissociation is also discussed.
Resumo:
Organic semiconductors have great promise in the field of electronics due to their low cost in term of fabrication on large areas and their versatility to new devices, for these reasons they are becoming a great chance in the actual technologic scenery. Some of the most important open issues related to these materials are the effects of surfaces and interfaces between semiconductor and metals, the changes caused by different deposition methods and temperature, the difficulty related to the charge transport modeling and finally a fast aging with time, bias, air and light, that can change the properties very easily. In order to find out some important features of organic semiconductors I fabricated Organic Field Effect Transistors (OFETs), using them as characterization tools. The focus of my research is to investigate the effects of ion implantation on organic semiconductors and on OFETs. Ion implantation is a technique widely used on inorganic semiconductors to modify their electrical properties through the controlled introduction of foreign atomic species in the semiconductor matrix. I pointed my attention on three major novel and interesting effects, that I observed for the first time following ion implantation of OFETs: 1) modification of the electrical conductivity; 2) introduction of stable charged species, electrically active with organic thin films; 3) stabilization of transport parameters (mobility and threshold voltage). I examined 3 different semiconductors: Pentacene, a small molecule constituted by 5 aromatic rings, Pentacene-TIPS, a more complex by-product of the first one, and finally an organic material called Pedot PSS, that belongs to the branch of the conductive polymers. My research started with the analysis of ion implantation of Pentacene films and Pentacene OFETs. Then, I studied totally inkjet printed OFETs made of Pentacene-TIPS or PEDOT-PSS, and the research will continue with the ion implantation on these promising organic devices.
Resumo:
Questo lavoro costituisce un'interfaccia tra la fisica dei materiali e la biologia; sfruttando le particolari proprietà del polimero conduttore poli(3,4-etilenediossitiofene) drogato con poli(stirene sulfonato) (PSS), o PEDOT:PSS, sono stati sviluppati e realizzati substrati per colture cellulari. Tale composto è infatti un polimero organico biocompatibile, caratterizzato da proprietà fisiche che ben si prestano ad applicazioni in campo biologico. Vengono inizialmente descritte le caratteristiche generali e gli schemi di classificazione dei polimeri, per analizzare quindi in dettaglio i polimeri conduttori e la loro modalità di drogaggio. Si presenta quindi il PEDOT:PSS, del quale vengono descritte le proprietà, in particolare ci si sofferma sulle quelle termiche, meccaniche ed elettriche. Il primo capitolo si conclude con la presentazione delle applicazioni bioelettroniche del PEDOT:PSS, illustrando le principali applicazioni nella ricerca biologica e descrivendo le caratteristiche che ne hanno fatto uno dei composti più utilizzati per questo tipo di applicazioni. Nel secondo capitolo, per la parte sperimentale, sono stati descritti approfonditamente gli strumenti e i materiali utilizzati; in particolare vengono spiegati dettagliatamente il procedimento di spin-coating per la produzione di film sottili e le tecniche AFM (Atomic Force Microscopy) per l'analisi della morfologia superficiale. Nel terzo capitolo vengono esposte le tecniche sperimentali impiegate: è stata sviluppata una procedura di produzione ripetibile, grazie alla quale sono stati realizzati dei campioni, per i quali poi è stata misurata la rugosità. I risultati conseguiti sono stati infine correlati con l'analisi della proliferazione cellulare, illustrata chiaramente dalle immagini ottenute al microscopio ottico, che rivelano l'adesione e la moltiplicazione cellulare sui substrati di PEDOT:PSS.
Resumo:
Conjugated polymers and conjugated polymer blends have attracted great interest due to their potential applications in biosensors and organic electronics. The sub-100 nm morphology of these materials is known to heavily influence their electromechanical properties and the performance of devices they are part of. Electromechanical properties include charge injection, transport, recombination, and trapping, the phase behavior and the mechanical robustness of polymers and blends. Electrical scanning probe microscopy techniques are ideal tools to measure simultaneously electric (conductivity and surface potential) and dielectric (dielectric constant) properties, surface morphology, and mechanical properties of thin films of conjugated polymers and their blends.rnIn this thesis, I first present a combined topography, Kelvin probe force microscopy (KPFM), and scanning conductive torsion mode microscopy (SCTMM) study on a gold/polystyrene model system. This system is a mimic for conjugated polymer blends where conductive domains (gold nanoparticles) are embedded in a non-conductive matrix (polystyrene film), like for polypyrrole:polystyrene sulfonate (PPy:PSS), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). I controlled the nanoscale morphology of the model by varying the distribution of gold nanoparticles in the polystyrene films. I studied the influence of different morphologies on the surface potential measured by KPFM and on the conductivity measured by SCTMM. By the knowledge I gained from analyzing the data of the model system I was able to predict the nanostructure of a homemade PPy:PSS blend.rnThe morphologic, electric, and dielectric properties of water based conjugated polymer blends, e.g. PPy:PSS or PEDOT:PSS, are known to be influenced by their water content. These properties also influence the macroscopic performance when the polymer blends are employed in a device. In the second part I therefore present an in situ humidity-dependence study on PPy:PSS films spin-coated and drop-coated on hydrophobic highly ordered pyrolytic graphite substrates by KPFM. I additionally used a particular KPFM mode that detects the second harmonic electrostatic force. With this, I obtained images of dielectric constants of samples. Upon increasing relative humidity, the surface morphology and composition of the films changed. I also observed that relative humidity affected thermally unannealed and annealed PPy:PSS films differently. rnThe conductivity of a conjugated polymer may change once it is embedded in a non-conductive matrix, like for PPy embedded in PSS. To measure the conductivity of single conjugated polymer particles, in the third part, I present a direct method based on microscopic four-point probes. I started with metal core-shell and metal bulk particles as models, and measured their conductivities. The study could be extended to measure conductivity of single PPy particles (core-shell and bulk) with a diameter of a few micrometers.
Resumo:
Nanomedicine is a new branch of medicine, based on the potentiality and intrinsic properties of nanomaterials. Indeed, the nanomaterials ( i.e. the materials with nano and under micron size) can be suitable to different applications in biomedicine. The nanostructures can be used by taking advantage of their properties (for example superparamagnetic nanoparticles) or functionalized to deliver the drug in a specific target, thanks the ability to cross biological barriers. The size and the shape of 1D-nanostructures (nanotubes and nanowires) have an important role on the cell fate: their morphology plays a key role on the interaction between nanostructure and the biological system. For this reason the 1D nanostructure are interesting for their ability to mime the biological system. An implantable material or device must therefore integrate with the surrounding extracellular matrix (ECM), a complex network of proteins with structural and signaling properties. Innovative techniques allow the generation of complex surface patterns that can resemble the structure of the ECM, such as 1D nanostructures. NWs based on cubic silicon carbide (3C-SiC), either bare (3C-SiC NWs) or surrounded by an amorphous shell (3C-SiC/SiO2 core/shell NWs), and silicon oxycarbide nanowires (SiOxCy NWs) can meet the chemical, mechanical and electrical requirements for tissue engineering and have a strong potential to pave the way for the development of a novel generation of implantable nano-devices. Silicon oxycarbide shows promising physical and chemical properties as elastic modulus, bending strength and hardness, chemical durability superior to conventional silicate glasses in aggressive environments and high temperature stability up to 1300 °C. Moreover, it can easily be engineered through functionalization and decoration with macro-molecules and nanoparticles. Silicon carbide has been extensively studied for applications in harsh conditions, as chemical environment, high electric field and high and low temperature, owing to its high hardness, high thermal conductivity, chemical inertness and high electron mobility. Also, its cubic polytype (3C) is highly biocompatible and hemocompatible, and some prototypes of biomedical applications and biomedical devices have been already realized starting from 3C-SiC thin films. Cubic SiC-based NWs can be used as a biomimetic biomaterial, providing a robust and novel biocompatible biological interface . We cultured in vitro A549 human lung adenocarcinoma epithelial cells and L929 murine fibroblast cells over core/shell SiC/SiO2, SiOxCy and bare 3C-SiC nanowire platforms, and analysed the cytotoxicity, by indirect and direct contact tests, the cell adhesion, and the cell proliferation. These studies showed that all the nanowires are biocompatible according to ISO 10993 standards. We evaluated the blood compatibility through the interaction of the nanowires with platelet rich plasma. The adhesion and activation of platelets on the nanowire bundles, assessed via SEM imaging and soluble P-selectin quantification, indicated that a higher platelet activation is induced by the core/shell structures compared to the bare ones. Further, platelet activation is higher with 3C-SiC/SiO2 NWs and SiOxCyNWs, which therefore appear suitable in view of possible tissue regeneration. On the contrary, bare 3C-SiC NWs show a lower platelet activation and are therefore promising in view of implantable bioelectronics devices, as cardiovascular implantable devices. The NWs properties are suitable to allow the design of a novel subretinal Micro Device (MD). This devices is based on Si NWs and PEDOT:PSS, though the well know principle of the hybrid ordered bulk heterojunction (OBHJ). The aim is to develop a device based on a well-established photovoltaic technology and to adapt this know-how to the prosthetic field. The hybrid OBHJ allows to form a radial p–n junction on a nanowire/organic structure. In addition, the nanowires increase the light absorption by means of light scattering effects: a nanowires based p-n junction increases the light absorption up to the 80%, as previously demonstrated, overcoming the Shockley-Queisser limit of 30 % of a bulk p-n junction. Another interesting employment of these NWs is to design of a SiC based epicardial-interacting patch based on teflon that include SiC nanowires. . Such contact patch can bridge the electric conduction across the cardiac infarct as nanowires can ‘sense’ the direction of the wavefront propagation on the survival cardiac tissue and transmit it to the downstream surivived regions without discontinuity. The SiC NWs are tested in terms of toxicology, biocompatibility and conductance among cardiomyocytes and myofibroblasts.
Resumo:
Organic Solar Cells (OSCs) represent a photovoltaic technology with multiple interesting application properties. However, the establishment of this technology into the market is subject to the achievement of operational lifetimes appropriate to their application purposes. Thus, comprehensive understanding of the degradation mechanisms occurring in OSCs is mandatory in both selecting more intrinsically stable components and/or device architectures and implementing strategies that mitigate the encountered stability issues. Inverted devices can suffer from mechanical stress and delamination at the interface between the active layer, e.g. poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM), and the hole transport layer, e.g. poly(3,4-ethylenedioxythiophene):poly(p-styrene sulfonate) (PEDOT:PSS). This work proposes the incorporation of a thin adhesive interlayer, consisting of a diblock copolymer composed of a P3HT block and a thermally-triggerable, alkyl-protected PSS block. In this context, the synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) with controlled molar mass and low dispersity (Ð ≤ 1.50) via Reversible Addition-Fragmentation chain Transfer (RAFT) polymerisation has been extensively studied. Subsequently, Atomic Force Microscopy (AFM) was explored to characterise the thermal deprotection of P3HT-b-PNSS thin layers to yield amphiphilic P3HT-b-PSS, indicating that surface deprotection prior to thermal treatment could occur. Finally, structural variation of the alkyl protecting group in PSS allowed reducing the thermal treatment duration from 3 hours (P3HT-b-PNSS) to 45 minutes for the poly(isobutyl p-styrene sulfonate) (PiBSS) analogous copolymer. Another critical issue regarding the stability of OSCs is the sunlight-driven chemical degradation of the active layer. In the study herein, the combination of experimental techniques and theoretical calculations has allowed identification of the structural weaknesses of poly[(4,4’- bis(2-ethylhexyl) dithieno [3,2-b:2’,3’-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5’-diyl], Si-PCPDTBT, upon photochemical treatment in air. Additionally, the study of the relative photodegradation rates in air of a series of polymers with systematically modified backbones and/or alkyl side chains has shown no direct correlation between chemical structure and stability. It is proposed instead that photostability is highly dependent on the crystalline character of the deposited films. Furthermore, it was verified that photostability of blends based on these polymers is dictated by the (de)stabilising effect that [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) has over each polymer. Finally, a multiscale analysis on the degradation of solar cells based on poly[4,4' bis(2- ethylhexyl) dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-[2,5 bis(3 tetradecylthiophen 2-yl)thiazole[5,4-d]thiazole)-1,8-diyl] and PCBM, indicated that by judicious selection of device layers, architectures, and encapsulation materials, operational lifetimes up to 3.3 years with no efficiency losses can be successfully achieved.
Resumo:
In modern society, the body health is a very important issue to everyone. With the development of the science and technology, the new and developed body health monitoring device and technology will play the key role in the daily medical activities. This paper focus on making progress in the design of the wearable vital sign system. A vital sign monitoring system has been proposed and designed. The whole detection system is composed of signal collecting subsystem, signal processing subsystem, short-range wireless communication subsystem and user interface subsystem. The signal collecting subsystem is composed of light source and photo diode, after emiting light of two different wavelength, the photo diode collects the light signal reflected by human body tissue. The signal processing subsystem is based on the analog front end AFE4490 and peripheral circuits, the collected analog signal would be filtered and converted into digital signal in this stage. After a series of processing, the signal would be transmitted to the short-range wireless communication subsystem through SPI, this subsystem is mainly based on Bluetooth 4.0 protocol and ultra-low power System on Chip(SoC) nRF51822. Finally, the signal would be transmitted to the user end. After proposing and building the system, this paper focus on the research of the key component in the system, that is, the photo detector. Based on the study of the perovskite materials, a low temperature processed photo detector has been proposed, designed and researched. The device is made up of light absorbing layer, electron transporting and hole blocking layer, hole transporting and electron blocking layer, conductive substrate layer and metal electrode layer. The light absorbing layer is the important part of whole device, and it is fabricated by perovskite materials. After accepting the light, the electron-hole pair would be produced in this layer, and due to the energy level difference, the electron and hole produced would be transmitted to metal electrode and conductive substrate electrode through electron transporting layer and hole transporting layer respectively. In this way the response current would be produced. Based on this structure, the specific fabrication procedure including substrate cleaning; PEDOT:PSS layer preparation; pervoskite layer preparation; PCBM layer preparation; C60, BCP, and Ag electrode layer preparation. After the device fabrication, a series of morphological characterization and performance testing has been done. The testing procedure including film-forming quality inspection, response current and light wavelength analysis, linearity and response time and other optical and electrical properties testing. The testing result shows that the membrane has been fabricated uniformly; the device can produce obvious response current to the incident light with the wavelength from 350nm to 800nm, and the response current could be changed along with the light wavelength. When the light wavelength keeps constant, there exists a good linear relationship between the intensity of the response current and the power of the incident light, based on which the device could be used as the photo detector to collect the light information. During the changing period of the light signal, the response time of the device is several microseconds, which is acceptable working as a photo detector in our system. The testing results show that the device has good electronic and optical properties, and the fabrication procedure is also repeatable, the properties of the devices has good uniformity, which illustrates the fabrication method and procedure could be used to build the photo detector in our wearable system. Based on a series of testing results, the paper has drawn the conclusion that the photo detector fabricated could be integrated on the flexible substrate and is also suitable for the monitoring system proposed, thus made some progress on the research of the wearable monitoring system and device. Finally, some future prospect in system design aspect and device design and fabrication aspect are proposed.