872 resultados para transgenic animal
Resumo:
Since the publication of the book of Russell and Burch in 1959, scientific research has never stopped improving itself with regard to the important issue of animal experimentation. The European Directive 2010/63/EU “On the protection of animals used for scientific purposes” focuses mainly on the animal welfare, fixing the Russell and Burch’s 3Rs principles as the foundations of the document. In particular, the legislator clearly states the responsibility of the scientific community to improve the number of alternative methods to animal experimentation. The swine is considered a species of relevant interest for translational research and medicine due to its biological similarities with humans. The surgical community has, in fact, recognized the swine as an excellent model replicating the human cardiovascular system. There have been several wild-type and transgenic porcine models which were produced for biomedicine and translational research. Among these, the cardiovascular ones are the most represented. The continuous involvement of the porcine animal model in the biomedical research, as the continuous advances achieved using swine in translational medicine, support the need for alternative methods to animal experimentation involving pigs. The main purpose of the present work was to develop and characterize novel porcine alternative methods for cardiovascular translational biology/medicine. The work was mainly based on two different models: the first consisted in an ex vivo culture of porcine aortic cylinders and the second consisted in an in vitro culture of porcine aortic derived progenitor cells. Both the models were properly characterized and results indicated that they could be useful to the study of vascular biology. Nevertheless, both the models aim to reduce the use of experimental animals and to refine animal based-trials. In conclusion, the present research aims to be a small, but significant, contribution to the important and necessary field of study of alternative methods to animal experimentation.
Resumo:
Transgenic mouse models of human cancers represent one of the most promising approaches to elucidate clinically relevant mechanisms of action and provide insights into the treatment efficacy of new antitumor drugs. The use of Trp53 transgenic mice (Trp53 knockout [Trp53(-/-)] mice) for these kinds of studies is, so far, restricted by limitations in detecting developing tumors and the lack of noninvasive tools for monitoring tumor growth, progression, and treatment response.
Resumo:
A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.
Resumo:
The central event in protein misfolding disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated with different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer's and prion diseases. For this purpose, we inoculated prions in an Alzheimer's transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion-infected mice compared with their noninoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer's and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs.
Resumo:
Numerous animal models have been used to study diet effects on cholesterol and lipoprotein metabolism. However, most of those models differ from humans in the plasma distribution of cholesterol and in the processing of lipoproteins in the plasma compartment. Although transgenic or knock-out mice have been used to study a specific pathway involved in cholesterol metabolism, these data are of limited use because other metabolic pathways and responses to interventions may differ from the human condition.Carbohydrate restricted diets have been shown to reduce plasma triglycerides, increase HDL cholesterol and promote the formation of larger, less atherogenic LDL. However, the mechanisms behind these responses and the relation to atherosclerotic events in the aorta have not been explored in detail due to the lack of an appropriate animal model. Guinea pigs carry the majority of the cholesterol in LDL and possess cholesterol ester transfer protein and lipoprotein lipase activities, which results in reverse cholesterol transport and delipidation cascades equivalent to the human situation. Further, carbohydrate restriction has been shown to alter the distribution of LDL subfractions, to decrease cholesterol accumulation in aortas and to decrease aortic cytokine expression. It is the purpose of this review to discuss the use of guinea pigs as useful models to evaluate diet effects on lipoprotein metabolism, atherosclerosis and inflammation with an emphasis on carbohydrate restricted diets.
Resumo:
Angiotensin produced systemically or locally in tissues such as the brain plays an important role in the regulation of blood pressure and in the development of hypertension. We have established transgenic rats [TGR(ASrAOGEN)] expressing an antisense RNA against angiotensinogen mRNA specifically in the brain. In these animals, the brain angiotensinogen level is reduced by more than 90% and the drinking response to intracerebroventricular renin infusions is decreased markedly compared with control rats. Blood pressure of transgenic rats is lowered by 8 mmHg (1 mmHg = 133 Pa) compared with control rats. Crossbreeding of TGR(ASrAOGEN) with a hypertensive transgenic rat strain exhibiting elevated angiotensin II levels in tissues results in a marked attenuation of the hypertensive phenotype. Moreover, TGR(ASrAOGEN) exhibit a diabetes insipidus-like syndrome producing an increased amount of urine with decreased osmolarity. The observed reduction in plasma vasopressin by 35% may mediate these phenotypes of TGR(ASrAOGEN). This new animal model presenting long-term and tissue-specific down-regulation of angiotensinogen corroborates the functional significance of local angiotensin production in the brain for the central regulation of blood pressure and for the pathogenesis of hypertension.
Resumo:
Understanding nuclear receptor signaling in vivo would be facilitated by an efficient methodology to determine where a nuclear receptor is active. Herein, we present a feedback-inducible expression system in transgenic mice to detect activated nuclear receptor effector proteins by using an inducible reporter gene. With this approach, reporter gene induction is not limited to a particular tissue, and, thus, this approach provides the opportunity for whole-animal screens. Furthermore, the effector and reporter genes are combined to generate a single strain of transgenic mice, which enables direct and rapid analysis of the offspring. The system was applied to localize sites where the retinoic acid receptor ligand-binding domain is activated in vivo. The results identify previously discovered sources of retinoids in the embryo and indicate the existence of previously undiscovered regions of retinoic acid receptor signaling in vivo. Notably, the feedback-inducible nuclear-receptor-driven assay, combined with an independent in vitro assay, provides evidence for a site of retinoid synthesis in the isthmic mesenchyme. These data illustrate the potential of feedback-inducible nuclear-receptor-driven analyses for assessing in vivo activation patterns of nuclear receptors and for analyzing pharmacological properties of natural and synthetic ligands of potential therapeutic value.
Resumo:
HOX11, a divergent homeodomain-containing transcription factor, was isolated from the breakpoint of the nonrandom t(10;14)(q24;q11) chromosome translocation found in human T cell acute lymphoblastic leukemias. The translocation places the HOX11 coding sequence under the transcriptional control of TCR α/δ regulatory elements, resulting in ectopic expression of a normal HOX11 protein in thymocytes. To investigate the oncogenic potential of HOX11, we targeted its expression in lymphocytes of transgenic mice by placing the human cellular DNA under the transcriptional control of Ig heavy chain or LCK regulatory sequences. Only IgHμ-HOX11 mice expressing low levels of HOX11 were viable. During their second year of life, all HOX11 transgenic mice became terminally ill with more than 75% developing large cell lymphomas in the spleen, which frequently disseminated to thymus, lymph nodes, and other nonhematopoietic tissues. Lymphoma cells were predominantly clonal IgM+IgD+ mature B cells. Repopulation of severe combined immunodeficient mice with cells from hyperplastic spleens indicated that the HOX11 tumor phenotype was transplantable. Before tumor development, expression of the transgene did not result in perturbations in lymphopoiesis; however, lymphoid hyperplasia involving the splenic marginal zones was present in 20% of spleens. Our studies provide direct evidence that expression of HOX11 in lymphocytes leads to malignant transformation. These mice are a useful model system to study mechanisms involved in transformation from B-lineage hyperplasia to malignant lymphoma and for testing novel approaches to therapy. They represent a novel animal model for non-Hodgkin’s lymphoma of peripheral mature B cell origin.
Resumo:
DNA vaccines express antigens intracellularly and effectively induce cellular immune responses. Because only chimpanzees can be used to model human hepatitis C virus (HCV) infections, we developed a small-animal model using HLA-A2.1-transgenic mice to test induction of HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) and protection against recombinant vaccinia expressing HCV-core. A plasmid encoding the HCV-core antigen induced CD8+ CTLs specific for three conserved endogenously expressed core peptides presented by human HLA-A2.1. When challenged, DNA-immunized mice showed a substantial (5–12 log10) reduction in vaccinia virus titer compared with mock-immunized controls. This protection, lasting at least 14 mo, was shown to be mediated by CD8+ cells. Thus, a DNA vaccine expressing HCV-core is a potential candidate for a prophylactic vaccine for HLA-A2.1+ humans.
Resumo:
An emerging topic in plant biology is whether plants display analogous elements of mammalian programmed cell death during development and defense against pathogen attack. In many plant–pathogen interactions, plant cell death occurs in both susceptible and resistant host responses. For example, specific recognition responses in plants trigger formation of the hypersensitive response and activation of host defense mechanisms, resulting in restriction of pathogen growth and disease development. Several studies indicate that cell death during hypersensitive response involves activation of a plant-encoded pathway for cell death. Many susceptible interactions also result in host cell death, although it is not clear how or if the host participates in this response. We have generated transgenic tobacco plants to express animal genes that negatively regulate apoptosis. Plants expressing human Bcl-2 and Bcl-xl, nematode CED-9, or baculovirus Op-IAP transgenes conferred heritable resistance to several necrotrophic fungal pathogens, suggesting that disease development required host–cell death pathways. In addition, the transgenic tobacco plants displayed resistance to a necrogenic virus. Transgenic tobacco harboring Bcl-xl with a loss-of-function mutation did not protect against pathogen challenge. We also show that discrete DNA fragmentation (laddering) occurred in susceptible tobacco during fungal infection, but does not occur in transgenic-resistant plants. Our data indicate that in compatible plant–pathogen interactions apoptosis-like programmed cell death occurs. Further, these animal antiapoptotic genes function in plants and should be useful to delineate resistance pathways. These genes also have the potential to generate effective disease resistance in economically important crops.
Resumo:
A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.
Resumo:
The glucocorticoid-responsive units (GRUs) of the rat tyrosine aminotransferase were associated with the regulatory sequences of a cellular gene expressed ubiquitously--that coding for the largest subunit of RNA polymerase II. In transient expression assays, glucocorticoid responsiveness of the hybrid regulatory regions depends on the spatial relationship and number of regulatory elements. Two parameters affect the ratio of induction by glucocorticoids: the basal level of the hybrid promoter that is affected by the RNA polymerase II regulatory sequences and the glucocorticoid-induced level that depends on the distance between the GRUs and the TATA box. A fully active glucocorticoid-responsive hybrid gene was used to generate transgenic mice. Results show that a composite regulatory pattern is obtained: ubiquitous basal expression characteristic of the RNA polymerase II gene and liver-specific glucocorticoid activation characteristic of the tyrosine aminotransferase GRUs. This result demonstrates that the activity of the tyrosine aminotransferase GRUs is cell-type-specific not only in cultured cells but also in the whole animal.
Resumo:
S-Adenosylhomocysteine hydrolase (SAHH) is a key enzyme in transmethylation reactions that use S-adenosylmethionine as the methyl donor. Because of the importance of SAHH in a number of S-adenosylmethionine-dependent transmethylation reactions, particularly the 5' capping of mRNA during viral replication, SAHH has been considered as a target of potential antiviral agents against animal viruses. To test the possibility of engineering a broad type of resistance to plant viruses, we expressed the antisense RNA for tobacco SAHH in transgenic tobacco plants. As expected, transgenic plants constitutively expressing an anti-sense SAHH gene showed resistance to infection by various plant viruses. Among those plants, about half exhibited some level of morphological change (typically stunting). Analysis of the physiological change in those plants showed that they contained excess levels of cytokinin. Because cytokinin has been found to induce acquired resistance, there is also a strong possibility that the observed resistance was induced by cytokinin.
Resumo:
Progress toward understanding the biology of prostate cancer has been slow due to the few animal research models available to study the spectrum of this uniquely human disease. To develop an animal model for prostate cancer, several lines of transgenic mice were generated by using the prostate-specific rat probasin promoter to derive expression of the simian virus 40 large tumor antigen-coding region. Mice expressing high levels of the transgene display progressive forms of prostatic disease that histologically resemble human prostate cancer, ranging from mild intraepithelial hyperplasia to large multinodular malignant neoplasia. Prostate tumors have been detected specifically in the prostate as early as 10 weeks of age. Immunohistochemical analysis of tumor tissue has demonstrated that dorsolateral prostate-specific secretory proteins were confined to well-differentiated ductal epithelial cells adjacent to, or within, the poorly differentiated tumor mass. Prostate tumors in the mice also display elevated levels of nuclear p53 and a decreased heterogeneous pattern of androgen-receptor expression, as observed in advanced human prostate cancer. The establishment of breeding lines of transgenic mice that reproducibly develop prostate cancer provides an animal model system to study the molecular basis of transformation of normal prostatic cells and the factors influencing the progression to metastatic prostate cancer.
Resumo:
Purpose. To evaluate the preventive effect of tauroursodeoxycholic acid (TUDCA) on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). Methods. P23H line-3 rats were injected with TUDCA once a week from postnatal day (P)21 to P120, in parallel with vehicle-administered controls. At P120, functional activity of the retina was evaluated by electroretinographic (ERG) recording. The effects of TUDCA on the number, morphology, integrity, and synaptic connectivity of retinal cells were characterized by immunofluorescence confocal microscopy. Results. The amplitude of ERG a- and b-waves was significantly higher in TUDCA-treated animals under both scotopic and photopic conditions than in control animals. In the central area of the retina, TUDCA-treated P23H rats showed threefold more photoreceptors than control animals. The number of TUNEL-positive cells was significantly smaller in TUDCA-treated rats, in which photoreceptor morphology was preserved. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in TUDCA-treated P23H rats. Furthermore, in TUDCA-treated rat retinas, the number of both rod bipolar and horizontal cell bodies, as well as the density of their synaptic terminals in the outer plexiform layer, was greater than in control rats. Conclusions. TUDCA treatment was capable of preserving cone and rod structure and function, together with their contacts with their postsynaptic neurons. The neuroprotective effects of TUDCA make this compound potentially useful for delaying retinal degeneration in RP.