909 resultados para transfer suction box
Resumo:
It is reported in this work the preparation, characterisation and photoluminescence study of poly(methylmethacrylate) (PMMA) thin films co-doped with [Eu(tta)(3)(H(2)O)(2)] and [Tb(acac)(3)(H(2)O)(3)] complexes. Both the composition and excitation wavelength may be tailored to fine-tune the emission properties of these Ln(3+)-beta-diketonate doped polymer films, exhibiting green and red primary colours, as well as intermediate colours. In addition to the ligand-Ln(3+) intramolecular energy transfer, it is observed an unprecedented intermolecular energy transfer process from the (5)D(4) emitting level of the Tb(3+) ion to the excited triplet state T(1) of the tta ligand coordinated to the Eu(3+) ion. The PMMA polymer matrix acts as a co-sensitizer and enhances the overall luminescence intensity of the polymer films. Furthermore, it provides considerable UV protection for the luminescent species and improves the photostability of the doped system.
Resumo:
The Z-scan and thermal-lens techniques have been used to obtain the energy transfer upconversion parameter in Nd(3+)-doped materials. A comparison between these methods is done, showing that they are independent and provide similar results. Moreover, the advantages and applicability of each one are also discussed. The results point to these approaches as valuable alternative methods because of their sensitivity, which allows measurements to be performed in a pump-power regime without causing damage to the investigated material. (C) 2009 Optical Society of America
Resumo:
Outgassing of carbon dioxide (CO(2)) from rivers and streams to the atmosphere is a major loss term in the coupled terrestrial-aquatic carbon cycle of major low-gradient river systems (the term ""river system"" encompasses the rivers and streams of all sizes that compose the drainage network in a river basin). However, the magnitude and controls on this important carbon flux are not well quantified. We measured carbon dioxide flux rates (F(CO2)), gas transfer velocity (k), and partial pressures (p(CO2)) in rivers and streams of the Amazon and Mekong river systems in South America and Southeast Asia, respectively. F(CO2) and k values were significantly higher in small rivers and streams (channels <100 m wide) than in large rivers (channels >100 m wide). Small rivers and streams also had substantially higher variability in k values than large rivers. Observed F(CO2) and k values suggest that previous estimates of basinwide CO(2) evasion from tropical rivers and wetlands have been conservative and are likely to be revised upward substantially in the future. Data from the present study combined with data compiled from the literature collectively suggest that the physical control of gas exchange velocities and fluxes in low-gradient river systems makes a transition from the dominance of wind control at the largest spatial scales (in estuaries and river mainstems) toward increasing importance of water current velocity and depth at progressively smaller channel dimensions upstream. These results highlight the importance of incorporating scale-appropriate k values into basinwide models of whole ecosystem carbon balance.
Resumo:
The ability to transfer weight from one lower limb to the other is essential for the execution of daily life activities and little is known about how weight transfer during unconstrained natural standing is affected by age. This study examined the weight transfer ability of elderly individuals during unconstrained standing (for 30 mill) in comparison to young adults. The subjects (19 healthy elderly adults, range 65-80 years, and 19 healthy young adults, range 18-30 years) stood with each foot on a separate force plate and were allowed to change their posture freely at any time. The limits of stability and base of support width during standing, measures of mobility (using the timed up and go and the preferred walking speed tests), and fear of falling were also measured. In comparison to the young adults, during unconstrained standing the elderly adults produced four times fewer weight transfers of large amplitude (greater than,half of their body weight). The limits of stability and base of support width were significantly smaller for the elderly adults but there were no significant differences in the measures of mobility and in the fear of falling score compared to young adults. The observed significant age-related decrease in the use of weight transfer during unconstrained standing, despite any difference in the measured mobility of the subjects, suggests that this task reveals unnoticed and subtle differences in postural control, which may help to better understand age related impairments in balance that the elderly population experiences. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Xylitol is a sugar alcohol (polyalcohol) with many interesting properties for pharmaceutical and food products. It is currently produced by a chemical process, which has some disadvantages such as high energy requirement. Therefore microbiological production of xylitol has been studied as an alternative, but its viability is dependent on optimisation of the fermentation variables. Among these, aeration is fundamental, because xylitol is produced only under adequate oxygen availability. In most experiments with xylitol-producing yeasts, low oxygen transfer volumetric coefficient (K(L)a) values are used to maintain microaerobic conditions. However, in the present study the use of relatively high K(L)a values resulted in high xylitol production. The effect of aeration was also evaluated via the profiles of xylose reductase (XR) and xylitol clehydrogenase (XD) activities during the experiments. RESULTS: The highest XR specific activity (1.45 +/- 0.21 U mg(protein)(-1)) was achieved during the experiment with the lowest K(L)a value (12 h(-1)), while the highest XD specific activity (0.19 +/- 0.03 U mg(protein)(-1)) was observed with a K(L)a value of 25 h(-1). Xylitol production was enhanced when K(L)a was increased from 12 to 50 h(-1), which resulted in the best condition observed, corresponding to a xylitol volumetric productivity of 1.50 +/- 0.08 g(xylitol) L(-1) h(-1) and an efficiency of 71 +/- 6.0%. CONCLUSION: The results showed that the enzyme activities during xylitol bioproduction depend greatly on the initial KLa value (oxygen availability). This finding supplies important information for further studies in molecular biology and genetic engineering aimed at improving xylitol bioproduction. (C) 2008 Society of Chemical Industry
Resumo:
A secure communication system based on the error-feedback synchronization of the electronic model of the particle-in-a-box system is proposed. This circuit allows a robust and simple electronic emulation of the mechanical behavior of the collisions of a particle inside a box, exhibiting rich chaotic behavior. The required nonlinearity to emulate the box walls is implemented in a simple way when compared with other analog electronic chaotic circuits. A master/slave synchronization of two circuits exhibiting a rich chaotic behavior demonstrates the potentiality of this system to secure communication. In this system, binary data stream information modulates the bifurcation parameter of the particle-in-a-box electronic circuit in the transmitter. In the receiver circuit, this parameter is estimated using Pecora-Carroll synchronization and error-feedback synchronization. The performance of the demodulation process is verified through the eye pattern technique applied on the recovered bit stream. During the demodulation process, the error-feedback synchronization presented better performance compared with the Pecora-Carroll synchronization. The application of the particle-in-a-box electronic circuit in a secure communication system is demonstrated.
Resumo:
This paper presents new experimental flow boiling heat transfer results in micro-scale tubes. The experimental data were obtained in a horizontal 2.3 mm I.D stainless steel tube with heating length of 464 mm, R134a and R245fa as working fluids, mass velocities ranging from 50 to 700 kg m(-2) s(-1), heat flux from 5 to 55 kW m(-2), exit saturation temperatures of 22, 31 and 41 degrees C, and vapor qualities ranging from 0.05 to 0.99. Flow pattern characterization was also performed from images obtained by high-speed filming. Heat transfer coefficient results from 1 to 14 kW m(-2) K(-1) were measured. It was found that the heat transfer coefficient is a strong function of heat flux, mass velocity and vapor quality. The experimental data were compared against ten flow boiling predictive methods from the literature. Liu and Winterton [3], Zhang et al. [5] and Saitoh et al. [6] worked best for both fluids, capturing most of the experimental heat transfer trends. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The confined flows in tubes with permeable surfaces arc associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration, polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Three-dimensional discretizations used in numerical analyses of tunnel construction normally include excavation step lengths much shorter than tunnel cross-section dimensions. Simulations have usually worked around this problem by using excavation steps that are much larger than the actual physical steps used in a real tunnel excavation. In contrast, the analyses performed in this study were based on finely discretized meshes capable of reproducing the excavation lengths actually used in tunnels, and the results obtained for internal forces are up to 100% greater than those found in other analyses available in the literature. Whereas most reports conclude that internal forces depend on support delay length alone, this study shows that geometric path dependency (reflected by excavation round length) is very strong, even considering linear elasticity. Moreover, many other solutions found in the literature have also neglected the importance of the relative stiffness between the ground mass and support structure, probably owing to the relatively coarse meshes used in these studies. The analyses presented here show that relative stiffness may account for internal force discrepancies in the order of 60%. A dimensionless expression that takes all these parameters into account is presented as a good approximation for the load transfer mechanism at the tunnel face.
Resumo:
The aim of this study is to quantify the mass transfer velocity using turbulence parameters from simultaneous measurements of oxygen concentration fields and velocity fields. The surface divergence model was considered in more detail, using data obtained for the lower range of beta (surface divergence). It is shown that the existing models that use the divergence concept furnish good predictions for the transfer velocity also for low values of beta, in the range of this study. Additionally, traditional conceptual models, such as the film model, the penetration-renewal model, and the large eddy model, were tested using the simultaneous information of concentration and velocity fields. It is shown that the film and the surface divergence models predicted the mass transfer velocity for all the range of the equipment Reynolds number used here. The velocity measurements showed viscosity effects close to the surface, which indicates that the surface was contaminated with some surfactant. Considering the results, this contamination can be considered slight for the mass transfer predictions. (C) 2009 American Institute of Chemical Engineers AIChE J, 56: 2005-2017; 2010
Resumo:
The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees-inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO(3)/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees-inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees-inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3) m(3)). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents results of an experimental investigation carried out to determine the effects of the surface roughness of different materials on nucleate boiling heat transfer of refrigerants R-134a and R-123. Experiments have been performed over cylindrical surfaces of copper, brass and stainless steel. Surfaces have been treated by different methods in order to obtain an average roughness, Ra, varying from 0.03 mu m to 10.5 mu m. Boiling curves at different reduced pressures have been raised as part of the investigation. The obtained results have shown significant effects of the surface material, with brass being the best performing and stainless steel the worst. Polished surfaces seem to present slightly better performance than the sand paper roughened. Boiling on very rough surfaces presents a peculiar behavior characterized by good thermal performance at low heat fluxes, the performance deteriorating at high heat fluxes with respect to smoother surfaces. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Corresponding to the updated flow pattern map presented in Part I of this study, an updated general flow pattern based flow boiling heat transfer model was developed for CO2 using the Cheng-Ribatski-Wojtan-Thome [L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes, Int. J. Heat Mass Transfer 49 (2006) 4082-4094; L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, Erratum to: ""New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes"" [Heat Mass Transfer 49 (21-22) (2006) 4082-4094], Int. J. Heat Mass Transfer 50 (2007) 391] flow boiling heat transfer model as the starting basis. The flow boiling heat transfer correlation in the dryout region was updated. In addition, a new mist flow heat transfer correlation for CO2 was developed based on the CO2 data and a heat transfer method for bubbly flow was proposed for completeness sake. The updated general flow boiling heat transfer model for CO2 covers all flow regimes and is applicable to a wider range of conditions for horizontal tubes: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to 25 degrees C (reduced pressures from 0.21 to 0.87). The updated general flow boiling heat transfer model was compared to a new experimental database which contains 1124 data points (790 more than that in the previous model [Cheng et al., 2006, 2007]) in this study. Good agreement between the predicted and experimental data was found in general with 71.4% of the entire database and 83.2% of the database without the dryout and mist flow data predicted within +/-30%. However, the predictions for the dryout and mist flow regions were less satisfactory due to the limited number of data points, the higher inaccuracy in such data, scatter in some data sets ranging up to 40%, significant discrepancies from one experimental study to another and the difficulties associated with predicting the inception and completion of dryout around the perimeter of the horizontal tubes. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
It is well established, the importance of the measurement of soil suction for the assessment of mechanical and hydraulic behavior of unsaturated soils. Among the methods to obtain the soil suction, the tensiometer is one of the most convenient and reliable. However conventional tensiometer has a limitation related to the maximum suction it is capable of measure. This limitation was overcome by Ridley and Burland (1993), with the development of a high capacity tensiometer, which is capable of measure suction well above 100 kPa. The equipment has a quick response time, allowing the determination of suction in minutes. This paper presents a study about the factors that affect the equilibrium time for high capacity tensiometers in the laboratory. Soil specimens were prepared at three different conditions, creating different soil structures. In addition to that an investigation about the characteristic of the interface that is required between the soil sample and the porous ceramic of the tensiometer was carried out; showing the role of the paste on the technique. The results also suggested that it is possible to infer the hydraulic conductivity function using the equilibrium curve obtained during the measurement of the soil suction using the high capacity tensiometer.
Resumo:
The objective of this work is to develop an improved model of the human thermal system. The features included are important to solve real problems: 3D heat conduction, the use of elliptical cylinders to adequately approximate body geometry, the careful representation of tissues and important organs, and the flexibility of the computational implementation. Focus is on the passive system, which is composed by 15 cylindrical elements and it includes heat transfer between large arteries and veins. The results of thermal neutrality and transient simulations are in excellent agreement with experimental data, indicating that the model represents adequately the behavior of the human thermal system. (C) 2009 Elsevier Ltd. All rights reserved.