987 resultados para transcription factor FlbB


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. To investigate the role of the myocyte enhancer factor 2 (Mef2) transcription factor family in retinal diseases, Mef2c expression was assessed during retinal degeneration in the Rpe65(-/-) mouse model of Leber's congenital amaurosis (LCA). Mef2c-dependent expression of photoreceptor-specific genes was further addressed. Methods. Expression of Mef2 members was analyzed by oligonucleotide microarray, quantitative PCR (qPCR) and in situ hybridization. Mef2c-dependent transcriptional activity was assayed by luciferase assay in HEK293T cells. Results. Mef2c was the only Mef2 member markedly downregulated during retinal degeneration in Rpe65(-/-) mice. Mef2c mRNA level was decreased by more than 2 fold at 2 and 4 months and by 3.5 fold at 6 months in retinas of Rpe65(-/-) mice. Downregulation of Mef2c at the protein level was confirmed in Rpe65(-/-) retinas. The decrease in Mef2c mRNA levels in the developing Rpe65(-/-) retinas, from post-natal day (P)13 onward, was concomitant with the decreased expression of the rod-specific transcription factors Nrl and Nr2e3. Nrl was further shown to drive Mef2c transcriptional activity, supporting a physiological role for Mef2c in the retina. In addition, Mef2c appeared to act as a transcriptional repressor of its own expression, as well as those of the retina-specific retinal G-protein coupled receptor (Rgr), rhodopsin and M-opsin genes. Conclusions. These findings highlight the early altered regulation of the rod-specific transcriptional network in Rpe65-related disease. They further indicate that Mef2c may act as a novel transcription factor involved in the development and the maintenance of photoreceptor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PR0X1 est un facteur de transcription très conservé au cours de l'évolution. PROX1 joue un rôle essentiel dans de nombreuses étapes de l'embryogenèse, telles que le développement du système lymphatique ou la migration des hépatocytes. Récemment, il a été démontré que PROX1 contribue à la progression des tumeurs colorectales, en tant que gène cible de la voie de signalisation Wnt. En utilisant des approches de co- immunoprécipitation et de ligature de proximité, nous avons trouvé que PROX1 fait également partie du complexe transcriptionnel TCF/ß-catenin, à la fois dans les cellules humaines de cancer du colon et dans les cellules murines de l'épithélium de l'intestin, dans lesquelles la voie de signalisation Wnt est activée. Dans le but de comprendre le mécanisme d'action de PROX1, nous avons analysé le génome des cellules cancéreuses de colon à la recherche des sites de fixation de PROX1, TCF4 et ß-catenin. Nous avons ainsi pu montrer que TCF4, ß-catenin et PROX1 se fixent simultanément sur une sous- population d'amplificateurs génomiques, sur lesquels PROX1 agit comme répresseur. Ces résultats suggèrent que, spécifiquement dans le cadre du cancer du colon, PROX1 agit en tant que modificateur de la voie de transduction du signal Wnt/ß-catenin. De plus, nous proposons que ceci constitue un des mécanismes par lesquels la signalisation durable de Wnt, qui est observée dans la majorité des cancers du colon, transforme le programme génétique des progéniteurs intestinaux, initialement normal, en output spécifique de ce type de cancers, ce qui contribue plus tard à la croissance infinie de la tumeur, à son caractère invasif et à sa dissémination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HTPSELEX is a public database providing access to primary and derived data from high-throughput SELEX experiments aimed at characterizing the binding specificity of transcription factors. The resource is primarily intended to serve computational biologists interested in building models of transcription factor binding sites from large sets of binding sequences. The guiding principle is to make available all information that is relevant for this purpose. For each experiment, we try to provide accurate information about the protein material used, details of the wet lab protocol, an archive of sequencing trace files, assembled clone sequences (concatemers) and complete sets of in vitro selected protein-binding tags. In addition, we offer in-house derived binding sites models. HTPSELEX also offers reasonably large SELEX libraries obtained with conventional low-throughput protocols. The FTP site contains the trace archives and database flatfiles. The web server offers user-friendly interfaces for viewing individual entries and quality-controlled download of SELEX sequence libraries according to a user-defined sequencing quality threshold. HTPSELEX is available from ftp://ftp.isrec.isb-sib.ch/pub/databases/htpselex/ and http://www.isrec.isb-sib.ch/htpselex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently identified the winged-helix transcription factor Trident and described its expression pattern in synchronized fibroblasts. We have now studied Trident expression in cell lines, differentiating thymocytes and in lymphocytes derived from peripheral blood. During T cell differentiation, expression peaked in the actively dividing immature single positive cells. In peripheral blood lymphocytes, expression of Trident mRNA was absent, but could be induced upon stimulation with mitogens in vitro. These observations imply a function for Trident in dividing lymphocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomeres are associated with chromatin-mediated silencing of genes in their vicinity. However, how epigenetic markers mediate mammalian telomeric silencing and whether specific proteins may counteract this effect are not known. We evaluated the ability of CTF1, a DNA- and histone-binding transcription factor, to prevent transgene silencing at human telomeres. CTF1 was found to protect a gene from silencing when its DNA-binding sites were interposed between the gene and the telomeric extremity, while it did not affect a gene adjacent to the telomere. Protein fusions containing the CTF1 histone-binding domain displayed similar activities, while mutants impaired in their ability to interact with the histone did not. Chromatin immunoprecipitation indicated the propagation of a hypoacetylated histone structure to various extents depending on the telomere. The CTF1 fusion protein was found to recruit the H2A.Z histone variant at the telomeric locus and to restore high histone acetylation levels to the insulated telomeric transgene. Histone lysine trimethylations were also increased on the insulated transgene, indicating that these modifications may mediate expression rather than silencing at human telomeres. Overall, these results indicate that transcription factors can act to delimit chromatin domain boundaries at mammalian telomeres, thereby blocking the propagation of a silent chromatin structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell-dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6-dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO(2) concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO(2) and identify the bZIP transcription factor Rca1p as the first CO(2) regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO(2) build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO(2) sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO(2) availability in environments as diverse as the phagosome, yeast communities or liquid culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In human transcriptional regulation, DNA-sequence-specific factors can associate with intermediaries that orchestrate interactions with a diverse set of chromatin-modifying enzymes. One such intermediary is HCFC1 (also known as HCF-1). HCFC1, first identified in herpes simplex virus transcription, has a poorly defined role in cellular transcriptional regulation. We show here that, in HeLa cells, HCFC1 is observed bound to 5400 generally active CpG-island promoters. Examination of the DNA sequences underlying the HCFC1-binding sites revealed three sequence motifs associated with the binding of (1) ZNF143 and THAP11 (also known as Ronin), (2) GABP, and (3) YY1 sequence-specific transcription factors. Subsequent analysis revealed colocalization of HCFC1 with these four transcription factors at ∼90% of the 5400 HCFC1-bound promoters. These studies suggest that a relatively small number of transcription factors play a major role in HeLa-cell transcriptional regulation in association with HCFC1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural Killer (NK) cells are innate immune cells that can eliminate malignant and foreign cells and that play an important role for the early control of viral and fungal infections. Further, they are important regulators of the adaptive and innate immune responses. During their development in the bone marrow (BM) NK cells undergo several maturation steps that directly establish an effector program. The transcriptional network that controls NK cell development and maturation is still incompletely understood. Based on earlier findings that NK cell numbers are reduced in the absence of the transcription factor T cell factor-1 (Tcf-1), my thesis has addressed the precise role of this transcription factor for NK cell development, maturation and function and whether Tcf-1 acts as a nuclear effector of the canonical Wnt signaling pathway to mediate its effects. It is shown that Tcf-1 is selectively required for the emergence of mature BM NK cells. Surprisingly, the emergence of BM NK cells depends on the repressor function of Tcf-1 and is independent of the Wnt pathway. In BM and peripheral NK cells Tcf-1 is found to suppress Granzyme B (GzmB) expression, a key cytotoxic effector molecule required to kill target cells. We provide evidence that GzmB over-expression in the absence of Tcf-1 results in accelerated spontaneous death of bone marrow NK cells and of cytokine stimulated peripheral NK cells. Moreover, Tcf-1 deficient NK cells show reduced target cell killing, which is due to enhanced GzmB-dependent NK cell death induced by the recognition of tumour target cells. Collectively, these data provide significant new insights into the transcriptional regulation of NK cell development and function and suggest a novel mechanism that protects NK cells from the deleterious effects of highly cytotoxic effector molecules. - Les cellules NK (de l'anglais Natural Killer) font partie du système immunitaire inné et sont capables d'éliminer à elles seules les cellules cancéreuses ou infectées. Ces cellules participent dans la régulation et la coordination des réponses innée et adaptative. Lors de leur développement dans la moelle osseuse, les cellules NK vont acquérir leurs fonctions effectrices, un processus contrôlé par des facteurs de transcription mais encore peu connu. Des précédentes travaux ont montré qu'une diminution du nombre de cellules NK corrélait avec l'absence du facteur de transcription Tcf-1 (T cell factor-1), suggérant un rôle important de Tcf-1 dans le développement de cellules NK. Cette thèse a pour but de mieux comprendre le rôle du facteur de transcription Tcf-1 lors du développement et la maturation des cellules NK, ainsi que son interaction avec la voie de signalisation Wnt. Nous avons montré que Tcf-1 est essentiel pour la transition des cellules immatures NK (iNK) à des cellules matures NK (mNK) dans la moelle osseuse, et cela de manière indépendamment de la voie de signalisation Wnt. De manière intéressante, nous avons observé qu'en absence du facteur de transcription Tcf-1, les cellules NK augmentaient l'expression de la protéine Granzyme B (GzmB), une protéine essentielle pour l'élimination des cellules cancéreuses ou infectées. Ceci a pour conséquence, une augmentation de la mort des cellules mNK dans la moelle osseuse ainsi qu'une diminution de leur fonction «tueuses». Ces résultats montrent pour la première fois, le rôle répresseur du facteur de transcription Tcf-1 dans l'expression de la protéine GzmB. L'ensemble de ces résultats apporte de nouveaux éléments concernant le rôle de Tcf-1 dans la régulation du développement et de la fonction des cellules NK et suggèrent un nouveau mécanisme cellulaire de protection contre les effets délétères d'une dérégulation de l'expression des molécules cytotoxique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NFAT transcription factors control T-cell activation and function. Specifically, the transcription factor NFATc2 affects the regulation of cell differentiation and growth and plays a critical role in the development of colonic inflammation. Here, we used an experimental model of colitis-associated colorectal carcinoma to investigate the contribution of NFATc2 to the promotion of colonic tumors. Compared with wild-type animals that readily presented with multiple colon tumors, NFATc2-deficient mice were protected from tumor development. This observed decrease in colonic tumor progression was associated with reduced endoscopic inflammation, increased apoptosis of lamina propria T lymphocytes, and significantly reduced levels of the critical proinflammatory cytokines interleukin (IL)-21 and IL-6. Administration of hyper IL-6 abrogated protection from tumor progression in NFATc2-knockout mice and restored tumor incidence to control levels. Taken together, our findings highlight a pivotal role for NFATc2 in the establishment of inflammation-associated colorectal tumors mediated by control of IL-6 expression. Cancer Res; 72(17); 4340-50. ©2012 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NF1 is a family of polypeptides that binds to discrete DNA motifs and plays varying roles in the regulation of gene expression. These polypeptides are also thought to mediate the expression of differentiation-specific markers such as adipocyte and mammary cell type-specific genes. The expression of a number of cellular differentiation-specific markers is down-regulated during neoplastic transformation. We therefore investigated whether oncogenic transformation interferes with the action of NF1. Stable transfection of activated Ha-ras into a number of murine cells correlated with a down-regulation of the expression of the NF1 genes NF1/CTF and NF1/X. The down-regulation was not at the transcriptional level but at the level of stability of the NF1 mRNAs. The level of the DNA binding activity of the NF1 proteins was also reduced in Ha-v-ras-transformed cells, and the expression of a gene that depends on this family of transcription factors was specifically repressed. These results demonstrate that an activated Ha-ras-induced pathway destabilizes the half-life of mRNAs encoding specific members in the NF1 family of transcription factors, which leads to a decrease in NF1-dependent gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genomic era has revealed that the large repertoire of observed animal phenotypes is dependent on changes in the expression patterns of a finite number of genes, which are mediated by a plethora of transcription factors (TFs) with distinct specificities. The dimerization of TFs can also increase the complexity of a genetic regulatory network manifold, by combining a small number of monomers into dimers with distinct functions. Therefore, studying the evolution of these dimerizing TFs is vital for understanding how complexity increased during animal evolution. We focus on the second largest family of dimerizing TFs, the basic-region leucine zipper (bZIP), and infer when it expanded and how bZIP DNA-binding and dimerization functions evolved during the major phases of animal evolution. Specifically, we classify the metazoan bZIPs into 19 families and confirm the ancient nature of at least 13 of these families, predating the split of the cnidaria. We observe fixation of a core dimerization network in the last common ancestor of protostomes-deuterostomes. This was followed by an expansion of the number of proteins in the network, but no major dimerization changes in interaction partners, during the emergence of vertebrates. In conclusion, the bZIPs are an excellent model with which to understand how DNA binding and protein interactions of TFs evolved during animal evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.