931 resultados para transcranial doppler ultrasound


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the intraoperative courses of 2 consecutive Berlin Heart Excor® Pediatric Ventricular Assist Device implantations, in which transcranial Doppler ultrasonography helped to detect macroscopically undetected residual air bubbles captured in the pump after air removal had been correctly performed according to manufacturer's specifications. Our experience with these cases suggests that a beat-to beat deairing maneuver guided by transcranial Doppler is a useful strategy for reducing cerebral exposure to perioperative gaseous microembolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE The aim of this present study was to evaluate the sonographic correlation between Doppler flow characteristics of the uterine arteries and tumor size in patients with cervical cancer, in order to establish a new potential marker to monitor treatment response. METHODS This was a retrospective cohort study of 25 patients who underwent a sonographic evaluation of Doppler flow characteristics of the uterine arteries before surgery or radiochemotherapy for early and locally advanced/advanced cervical cancer, respectively, was analyzed. The primary outcome was the correlation between Doppler flow characteristics of the uterine arteries and tumor size in patients with cervical cancer. RESULTS Median age was 49 (range 26-85) years, and mean tumor size was 40.8 ± 17 mm. A significant positive correlation was found between tumor diameter and the uterine artery end-diastolic velocity (r = 0.47, p < 0.05) as well as the peak systolic velocity (r = 0.41, p < 0.05). No correlation was found between tumor size and the pulsatility index or resistance index. CONCLUSIONS In cervical cancer, uterine artery velocity parameters are associated with tumor size. This finding could become particularly useful in the follow-up of locally advanced cervical cancer patients undergoing radiochemotherapy or in corroborating the selection of women with more possibility of a high response rate during neoadjuvant chemotherapy before surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to evaluate the Color Doppler ultrasound as a substitute for laparoscopy for couting of corpora lutea (CL) in superovulated sheep. In conclusion, the Color Doppler ultrasonography is highly efficient to estimate the number of CLs in superovulated ewes. This represents an important advance because it replaces invasive laparoscopic procedure, avoids fasting, drugs use and unnecessary handling in animals that did not respond to the treatment. Therefore, the Color Doppler ultrasound can replace the laparoscopy for the assessment of superovulated sheep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20, 40, and 60% of maximal voluntary contraction (MVC). Eleven volunteers completed 2 min of intermittent isometric contractions (12/min) at an elbow angle of 90° interspersed with 3 min rest between intensities in systematic order. Surface electromyography (EMG) was recorded from the right biceps brachii and near infrared spectroscopy (NIRS) was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2), deoxyhemoglobin (HHb), and total hemoglobin (Hbtot). Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv) bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20 to 60% MVC (P < 0.05). Cerebral HbO2 and Hbtot increased while HHb decreased during contractions with differences observed between 60% vs. 40% and 20% MVC (P < 0.05). Muscle HbO2 decreased while HHb increased during contractions with differences being observed among intensities (P < 0.05). Muscle Hbtot increased from rest at 20% MVC (P < 0.05), while no further change was observed at 40 and 60% MVC (P > 0.05). MCAv increased from rest to exercise but was not different among intensities (P > 0.05). Force output correlated with the root mean square EMG and changes in muscle HbO2 (P < 0.05), but not changes in cerebral HbO2 (P > 0.05) at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a leveling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central neuronal activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although reductions in cerebral blood flow (CBF) may be implicated in the development of central fatigue during environmental stress, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has yet to be isolated. The current research program examined the influence of CBF, with and without consequent hypocapnia, on neuromuscular responses during hypoxia and passive heat stress. To this end, neuromuscular responses, as indicated by motor evoked potentials (MEP), maximal M-wave (Mmax) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in three separate projects: 1) hypocapnia, independent of concomitant reductions in CBF; 2) altered CBF during severe hypoxia and; 3) thermal hyperpnea-mediated reductions in CBF, independent of hypocapnia. All projects employed a custom-built dynamic end-tidal forcing system to control end-tidal PCO2 (PETCO2), independent of the prevailing environmental conditions, and cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg·Kg-1) to selectively reduce CBF (estimated using transcranial Doppler ultrasound) without changes in PETCO2. A primary finding of the present research program is that the excitability of the corticospinal tract is inherently sensitive to changes in PaCO2, as demonstrated by a 12% increase in MEP amplitude in response to moderate hypocapnia. Conversely, CBF mediated reductions in cerebral O2 delivery appear to decrease corticospinal excitability, as indicated by a 51-64% and 4% decrease in MEP amplitude in response to hypoxia and passive heat stress, respectively. The collective evidence from this research program suggests that impaired voluntary activation is associated with reductions in CBF; however, it must be noted that changes in cVA were not linearly correlated with changes in CBF. Therefore, other factors independent of CBF, such as increased perception of effort, distress or discomfort, may have contributed to the reductions in cVA. Despite the functional association between reductions in CBF and hypocapnia, both variables have distinct and independent influence on the neuromuscular system. Therefore, future studies should control or acknowledge the separate mechanistic influence of these two factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Failing cerebral blood flow (CBF) autoregulation may contribute to cerebral damage after traumatic brain injury (TBI). The purpose of this study was to describe the time course of CO(2)-dependent vasoreactivity, measured as CBF velocity in response to hyperventilation (vasomotor reactivity [VMR] index). We included 13 patients who had had severe TBI, 8 of whom received norepinephrine (NE) based on clinical indication. In these patients, measurements were also performed after dobutamine administration, with a goal of increasing cardiac output by 30%. Blood flow velocity was measured with transcranial Doppler ultrasound in both hemispheres. All patients except one had an abnormal VMR index in at least one hemisphere within the first 24 h after TBI. In those patients who did not receive catecholamines, mean VMR index recovered within the first 48 to 72 h. In contrast, in patients who received NE within the first 48 h period, VMR index did not recover on the second day. Cardiac output and mean CBF velocity increased significantly during dobutamine administration, but VMR index did not change significantly. In conclusion, CO(2) vasomotor reactivity was abnormal in the first 24 h after TBI in most of the patients, but recovered within 48 h in those patients who did not receive NE, in contrast to those eventually receiving the drug. Addition of dobutamine to NE had variable but overall insignificant effects on CO(2) vasomotor reactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Continuous venovenous hemodialysis (CVVHD) may generate microemboli that cross the pulmonary circulation and reach the brain. The aim of the present study was to quantify (load per time interval) and qualify (gaseous vs. solid) cerebral microemboli (CME), detected as high-intensity transient signals, using transcranial Doppler ultrasound. MATERIALS AND METHODS Twenty intensive care unit (ICU group) patients requiring CVVHD were examined. CME were recorded in both middle cerebral arteries for 30 minutes during CVVHD and a CVVHD-free interval. Twenty additional patients, hospitalized for orthopedic surgery, served as a non-ICU control group. Statistical analyses were performed using the Mann-Whitney U test or the Wilcoxon matched-pairs signed-rank test, followed by Bonferroni corrections for multiple comparisons. RESULTS In the non-ICU group, 48 (14.5-169.5) (median [range]) gaseous CME were detected. In the ICU group, the 67.5 (14.5-588.5) gaseous CME detected during the CVVHD-free interval increased 5-fold to 344.5 (59-1019) during CVVHD (P<0.001). The number of solid CME was low in all groups (non-ICU group: 2 [0-5.5]; ICU group CVVHD-free interval: 1.5 [0-14.25]; ICU group during CVVHD: 7 [3-27.75]). CONCLUSIONS This observational pilot study shows that CVVHD was associated with a higher gaseous but not solid CME burden in critically ill patients. Although the differentiation between gaseous and solid CME remains challenging, our finding may support the hypothesis of microbubble generation in the CVVHD circuit and its transpulmonary translocation toward the intracranial circulation. Importantly, the impact of gaseous and solid CME generated during CVVHD on brain integrity of critically ill patients currently remains unknown and is highly debated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare intraoperative cerebral microembolic load between minimally invasive extracorporeal circulation (MiECC) and conventional extracorporeal circulation (CECC) during isolated surgical aortic valve replacement (SAVR), we conducted a randomized trial in patients undergoing primary elective SAVR at a tertiary referral hospital. The primary outcome was the procedural phase-related rate of high-intensity transient signals (HITS) on transcranial Doppler ultrasound. HITS rate was used as a surrogate of cerebral microembolism in pre-defined procedural phases in SAVR using MiECC or CECC with (+F) or without (-F) an oxygenator with integrated arterial filter. Forty-eight patients were randomized in a 1:1 ratio to MiECC or CECC. Due to intraprocedural Doppler signal loss (n = 3), 45 patients were included in final analysis. MiECC perfusion regimen showed a significantly increased HITS rate compared to CECC (by a factor of 1.75; 95% confidence interval, 1.19-2.56). This was due to different HITS rates in procedural phases from aortic cross-clamping until declamping [phase 4] (P = 0.01), and from aortic declamping until stop of extracorporeal perfusion [phase 5] (P = 0.05). Post hoc analysis revealed that MiECC-F generated a higher HITS rate than CECC+F (P = 0.005), CECC-F (P = 0.05) in phase 4, and CECC-F (P = 0.03) in phase 5, respectively. In open-heart surgery, MiECC is not superior to CECC with regard to gaseous cerebral microembolism. When using MiECC for SAVR, the use of oxygenators with integrated arterial line filter appears highly advisable. Only with this precaution, MiECC confers a cerebral microembolic load comparable to CECC during this type of open heart surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since identification that mutations in NOTCH3 are responsible for cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the early 1990s, there has been extensive characterisation of the clinical and radiological features of the disease. However therapeutic interventions remain elusive, partly due to a limited understanding of the vascular pathophysiology and how it leads to the development of strokes, cognitive decline and disability. The apparent rarity and heterogenous natural history of CADASIL potentially make conducting any longitudinal or therapeutic trials difficult. The role of disease biomarkers is therefore of some interest. This thesis focuses on vascular function in CADASIL and how it may relate to clinical and radiological markers of disease. Establishing the prevalence of CADASIL in the West of Scotland was important to assess the impact of the disease, and how feasible a trial would be. A mutation prevalence of 10.7 per 100,000 was demonstrated, suggesting significant under diagnosis of the disease across much of Scotland. Cerebral hypoperfusion is thought to be important in CADASIL, and it has been shown that vascular abnormalities precede the development of brain pathology in mouse models. Investigation of vascular function in patients, both in the brain and systemically, requires less invasive measures. Arterial spin labelling magnetic resonance imaging (MRI) and transcranial Doppler ultrasound (TCD) can both be used to obtain non-invasive and quantifiable indices of vascular function. Monitoring patients with MRI whilst they receive different concentrations of inspired oxygen and carbon dioxide can provide information on brain function, and I reviewed the practicalities of this technique in order to guide the design of the studies in this thesis. 22 CADASIL patients were recruited to a longitudinal study. Testing included peripheral vascular assessment, assessment of disability, neurological dysfunction, mood and cognition. A CO2 reactivity challenge during both TCD and arterial spin labelling MRI, and detailed MRI sequences were obtained. I was able to demonstrate that vasoreactivity was associated with the number of lacunes and brain atrophy, as were carotid intima-media thickness, vessel stiffness, and age. Patients with greater disability, higher depressive symptoms and poorer processing speed showed a tendency to worse cerebral vasoreactivity but numbers were small. This observation suggests vasoreactivity may have potential as a therapeutic target, or a biomarker. I then wished to establish if arterial spin labelling MRI was useful for assessing change in cerebral blood flow in CADASIL patients. Cortical grey matter showed the highest blood flow, mean (SD), 55 (10) ml/100g/min and blood flow was significantly lower within hyperintensities (19 (4) ml/100g/min; p <0.001). Over one year, blood flow in both grey matter (mean -7 (10) %; p = 0.028) and deep white matter (-8 (13) %; p = 0.036) declined significantly. Cerebrovascular reactivity did not change over one year. I then investigated whether baseline vascular markers were able to predict change in radiological or neuropsychological measures of disease. Changes in brain volume, lacunes, microbleeds and normalised subcortical hyperintensity volume (increase of 0.8%) were shown over one year. Baseline vascular parameters were not able to predict these changes, or those in neuropsychological testing. NOTCH3 is found throughout the body and a systemic vasculopathy has been seen particularly affecting resistance vessels. Gluteal biopsies were obtained from 20 CADASIL patients, and ex vivo myography investigated the response to vasoactive agents. Evidence of impairment in both vasodilation and vasoconstriction was shown. The addition of antioxidants improved endothelium-dependent relaxation, indicating a role for oxidative stress in CADASIL pathology. Myography measures were not related to in vivo measures in the sub-group of patients who had taken part in both studies. The small vessels affected in CADASIL are unable to be imaged by conventional MR imaging so I aimed to establish which vessels might be responsible for lacunes with use of a microangiographic template overlaid onto brain images registered to a standard brain template. This showed most lacunes are small and associated with tertiary arterioles. On the basis of this thesis, it is concluded that vascular dysfunction plays an important role in the pathophysiology of CADASIL, and further assessment of vascular measures in longitudinal studies is needed. Arterial spin labelling MRI should be used as it is a reliable, non-invasive modality that can measure change over one year. Furthermore conventional cardiovascular risk factor prevention should be undertaken in CADASIL patients to delay the deleterious effects of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurosonological studies, specifically transcranial Doppler (TCD) and transcranial color-coded duplex (TCCD), have high level of specificity and sensitivity and they are used as complementary tests for the diagnosis of brain death (BD). A group of experts, from the Neurosonology Department of the Brazilian Academy of Neurology, created a task force to determine the criteria for the following aspects of diagnosing BD in Brazil: the reliability of TCD methodology; the reliability of TCCD methodology; neurosonology training and skills; the diagnosis of encephalic circulatory arrest; and exam documentation for BD. The results of this meeting are presented in the current paper.