954 resultados para training intensity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The prescription of strength training intensity (ST) by maximum repetition (RM) is characterized by a decrease in the number of repetitions in multiple series. Some studies have shown that reductions in the intensity of exercise can optimize the volume of training with similar acute neuromuscular behaviors. The objective of the study was to investigate the acute effect of two different ST intensities on the training volume, maximum voluntary contraction (MVC) and rate of force development (RFD) in elderly women. The study included eight trained women (66.7 ± 6.7 years; 7.6 ± 17.8 kg; 159 cm; 29.33 ± 5.80 kg/m²). They underwent to three experimental conditions: two different intensities of ST (100% and 80% of 15-RM) on a chair for Leg Extension and a control condition. In the condition to 100% of 15 RM, all participants performed three sets to the concentric muscle fatigue, whereas in the condition to 80% involved the use of two sets of 15 repetitions and only the third to the concentric muscle fatigue. The order of experimental conditions was randomized. The MVC and RFD were determined on the basis of the isometric forcetime curve analysis which was obtained by a force transducer fixed on the unit Bonnet Chair, in the pre and after four and ten minutes for each experimental conditions. The total volume was calculated by multiplying the number of repetitions in three sets by the load in kg. Descriptive statistical analysis procedures were employed (mean ± standard deviation) in addition to two-way ANOVA. The level of significance was set at p <0.05. It was neither main effect of moment or condition, nor condition x moment interaction for MVC and RFD. For the total volume, no significant difference was noted between the conditions (100 and 80% of 15-RM). For sustainability of ...(Complete abstract click electronic access below)
Resumo:
PURPOSE: Exercise-related sudden cardiac deaths (SCD) occur with a striking male predominance. A higher sympathetic tone in men has been suggested as risk factor for SCD. Elite athletes have the highest risk for exercise-related SCD. We aimed to analyze the autonomic nervous system of elite cross-country skiers from Norway, Russia and Switzerland in supine position and after orthostatic challenge in various training periods (TP). METHOD: Measurements of heart rate variability (HRV) were performed on a weekly basis over 1 year using an orthostatic challenge test with controlled breathing. Main outcome parameters were the high-frequency power in supine position (HFsupine) as marker of cardiac parasympathetic activity and the low-frequency/high-frequency power ratio after orthostatic challenge (LF/HFstand) as marker of cardiac sympathetic activation. Training intensity and duration were recorded daily and expressed as training strain. The training year was divided into three TPs. An average of weekly HRV measurements was calculated for each TP. RESULT: Female (n = 19, VO2max 62.0 +/- 4.6 ml kg(-1) min(-1), age 25.8 +/- 4.3 years) and male (n = 16, VO2max 74.3 +/- 6.3 ml kg(-1) min(-1), age 24.4 +/- 4.2 years) athletes were included. Training strain was comparable between sexes (all p > 0.05) and changed between TPs (all p < 0.05) while no HRV parameters changed over time. There were no sex differences in HFsupine while the LF/HFstand was significantly higher in male athletes in all TPs. CONCLUSION: For a comparable amount of training, male athletes showed constantly higher markers of sympathetic activity after a provocation maneuver. This may explain part of the male predominance in sports-related SCD.
Resumo:
Due to the lack of exercise testing devices that can be employed in stroke patients with severe disability, the aim of this PhD research was to investigate the clinical feasibility of using a robotics-assisted tilt table (RATT) as a method for cardiopulmonary exercise testing (CPET) and exercise training in stroke patients. For this purpose, the RATT was augmented with force sensors, a visual feedback system and a work rate calculation algorithm. As the RATT had not been used previously for CPET, the first phase of this project focused on a feasibility study in 11 healthy able-bodied subjects. The results demonstrated substantial cardiopulmonary responses, no complications were found, and the method was deemed feasible. The second phase was to analyse validity and test-retest reliability of the primary CPET parameters obtained from the RATT in 18 healthy able-bodied subjects and to compare the outcomes to those obtained from standard exercise testing devices (a cycle ergometer and a treadmill). The results demonstrated that peak oxygen uptake (V'O2peak) and oxygen uptake at the submaximal exercise thresholds on the RATT were ̴20% lower than for the cycle ergometer and ̴30% lower than on the treadmill. A very high correlation was found between the RATT vs the cycle ergometer V'O2peak and the RATT vs the treadmill V'O2peak. Test-retest reliability of CPET parameters obtained from the RATT were similarly high to those for standard exercise testing devices. These findings suggested that the RATT is a valid and reliable device for CPET and that it has potential to be used in severely impaired patients. Thus, the third phase was to investigate using the RATT for CPET and exercise training in 8 severely disabled stroke patients. The method was technically implementable, well tolerated by the patients, and substantial cardiopulmonary responses were observed. Additionally, all patients could exercise at the recommended training intensity for 10 min bouts. Finally, an investigation of test-retest reliability and four-week changes in cardiopulmonary fitness was carried out in 17 stroke patients with various degrees of disability. Good to excellent test-retest reliability and repeatability were found for the main CPET variables. There was no significant difference in most CPET parameters over four weeks. In conclusion, based on the demonstrated validity, reliability and repeatability, the RATT was found to be a feasible and appropriate alternative exercise testing and training device for patients who have limitations for use of standard devices.
Resumo:
El presente trabajo consistió en el desarrollo de una intervención nutricional a largo plazo llevada a cabo con jugadores profesionales de baloncesto, en función al cumplimiento de las recomendaciones nutricionales, con los siguientes dos objetivos: 1) valorar los cambios que dicha intervención produce sobre las prácticas nutricionales diarias de estos deportistas y 2) conocer la influencia de las modificaciones nutricionales producidas sobre la tasa de percepción del esfuerzo por sesión (RPE-Sesión) y la fatiga, a lo largo de una temporada competitiva, tanto para entrenamientos como partidos oficiales. Los objetivos del estudio se fundamentan en: 1) la numerosa evidencia científica que muestra la inadecuación de los hábitos nutricionales de los jugadores de baloncesto y otros deportistas respecto a las recomendaciones nutricionales; 2) el hecho ampliamente reconocido en la literatura especializada de que una ingesta nutricional óptima permite maximizar el rendimiento deportivo (a nivel físico y cognitivo), promoviendo una rápida recuperación y disminuyendo el riesgo de enfermedades y lesiones deportivas. No obstante, pocos estudios han llevado a cabo una intervención nutricional a largo plazo para mejorar los hábitos alimentarios de los deportistas y ninguno de ellos fue realizado con jugadores de baloncesto; 3) la elevada correlación entre la percepción del esfuerzo (RPE) y variables fisiológicas relacionadas al desarrollo de un ejercicio (por ej.: frecuencia cardíaca, consumo máximo de oxígeno o lactato sanguíneo) y los múltiples estudios que muestran la atenuación de la RPE durante la realización del ejercicio mediante una ingesta puntual de nutrientes, (especialmente de hidratos de carbono) aunque ninguno fue desarrollado en baloncesto; 4) el estudio incipiente de la relación entre la ingesta nutricional y la RPE-Sesión, siendo éste un método validado en baloncesto y otros deportes de equipo como indicador de la carga de trabajo interna, el rendimiento deportivo y la intensidad del ejercicio realizado; 5) el hecho de que la fatiga constituye uno de los principales factores influyentes en la percepción del esfuerzo y puede ser retrasada y/o atenuada mediante la ingesta de carbohidratos, pudiendo disminuir consecuentemente la RPE-Sesión y la carga interna del esfuerzo físico, potenciando el rendimiento deportivo y las adaptaciones inducidas por el entrenamiento; 6) la reducida evidencia acerca del comportamiento de la RPE-Sesión ante la modificación de la ingesta de nutrientes, encontrándose sólo un estudio llevado a cabo en baloncesto y 7) la ausencia de investigaciones acerca de la influencia que puede tener la mejora del patrón nutricional de los jugadores sobre la RPE-Sesión y la fatiga, desconociéndose si la adecuación de los hábitos nutricionales conduce a una disminución de estas variables en el largo plazo para todos los entrenamientos y partidos oficiales a nivel profesional. Por todo esto, este trabajo comienza con una introducción que presenta el marco teórico de la importancia y función de la nutrición en el deporte, así como de las recomendaciones nutricionales actuales a nivel general y para baloncesto. Además, se describen las intervenciones nutricionales llevadas a cabo previamente con otros deportistas y las consecuentes modificaciones sobre el patrón alimentario, coincidiendo este aspecto con el primer objetivo del presente estudio. Posteriormente, se analiza la RPE, la RPE-Sesión y la fatiga, focalizando el estudio en la relación de dichas variables con la carga de trabajo físico, la intensidad del entrenamiento, el rendimiento deportivo y la recuperación post ejercicio. Finalmente, se combinan todos los aspectos mencionados: ingesta nutricional, RPE percepción del esfuerzo y fatiga, con el fin de conocer la situación actual del estudio de la relación entre dichas variables, conformando la base del segundo objetivo de este estudio. Seguidamente, se exponen y fundamentan los objetivos antes mencionados, para dar lugar después a la explicación de la metodología utilizada en el presente estudio. Ésta consistió en un diseño de estudios de caso, aplicándose una intervención nutricional personalizada a tres jugadores de baloncesto profesional (cada jugador = un estudio de caso; n = 1), con el objetivo de adecuar su ingesta nutricional en el largo plazo a las recomendaciones nutricionales. A su vez, se analizó la respuesta individual de cada uno de los casos a dicha intervención para los dos objetivos del estudio. Para ello, cada jugador completó un registro diario de alimentos (7 días; pesada de alimentos) antes, durante y al final de la intervención. Además, los sujetos registraron diariamente a lo largo del estudio la RPE-Sesión y la fatiga en entrenamientos físicos y de balón y en partidos oficiales de liga, controlándose además en forma cuantitativa otras variables influyentes como el estado de ánimo y el sueño. El análisis de los datos consistió en el cálculo de los estadísticos descriptivos para todas las variables, la comparación de la ingesta en los diferentes momentos evaluados con las recomendaciones nutricionales y una comparación de medias no paramétrica entre el período pre intervención y durante la intervención con el test de Wilcoxon (medidas repetidas) para todas las variables. Finalmente, se relacionaron los cambios obtenidos en la ingesta nutricional con la percepción del esfuerzo y la fatiga y la posible influencia del estado de ánimo y el sueño, a través de un estudio correlacional (Tau_b de Kendall). Posteriormente, se presentan los resultados obtenidos y la discusión de los mismos, haciendo referencia a la evidencia científica relacionada que se encuentra publicada hasta el momento, la cual facilitó el análisis de la relación entre RPE-Sesión, fatiga y nutrición a lo largo de una temporada. Los principales hallazgos y su correspondiente análisis, por lo tanto, pueden resumirse en los siguientes: 1) los tres jugadores de baloncesto profesional presentaron inicialmente hábitos nutricionales inadecuados, haciendo evidente la necesidad de un nutricionista deportivo dentro del cuerpo técnico de los equipos profesionales; 2) las principales deficiencias correspondieron a un déficit pronunciado de energía e hidratos de carbono, que fueron reducidas con la intervención nutricional; 3) la ingesta excesiva de grasa total, ácidos grasos saturados, etanol y proteínas que se halló en alguno/s de los casos, también se adecuó a las recomendaciones después de la intervención; 4) la media obtenida durante un período de la temporada para la RPE-Sesión y la fatiga de entrenamientos, podría ser disminuida en un jugador individual mediante el incremento de su ingesta de carbohidratos a largo plazo, siempre que no existan alteraciones psico-emocionales relevantes; 5) el comportamiento de la RPE-Sesión de partidos oficiales no parece estar influido por los factores nutricionales modificados en este estudio, dependiendo más de la variación de elementos externos no controlables, intrínsecos a los partidos de baloncesto profesional. Ante estos resultados, se pudo observar que las diferentes características de los jugadores y las distintas respuestas obtenidas después de la intervención, reforzaron la importancia de utilizar un diseño de estudio de casos para el análisis de los deportistas de élite y, asimismo, de realizar un asesoramiento nutricional personalizado. Del mismo modo, la percepción del esfuerzo y la fatiga de cada jugador evolucionaron de manera diferente después de la intervención nutricional, lo cual podría depender de las diferentes características de los sujetos, a nivel físico, psico-social, emocional y contextual. Por ello, se propone que el control riguroso de las variables cualitativas que parecen influir sobre la RPE y la fatiga a largo plazo, facilitaría la comprensión de los datos y la determinación de factores desconocidos que influyen sobre estas variables. Finalmente, al ser la RPE-Sesión un indicador directo de la carga interna del entrenamiento, es decir, del estrés psico-fisiológico experimentado por el deportista, la posible atenuación de esta variable mediante la adecuación de los hábitos nutricionales, permitiría aplicar las cargas externas de entrenamiento planificadas, con menor estrés interno y mejor recuperación entre sesiones, disminuyendo también la sensación de fatiga, a pesar del avance de la temporada. ABSTRACT This study consisted in a long-term nutritional intervention carried out with professional basketball players according to nutritional recommendations, with the following two main objectives: 1) to evaluate the changes produced by the intervention on daily nutritional practices of these athletes and 2) to determine the influence of long term nutritional intake modifications on the rate of perceived exertion per session (Session-RPE) and fatigue, throughout a competitive season for training as well as competition games. These objectives are based on: 1) much scientific evidence that shows an inadequacy of the nutritional habits of basketball players and other athletes regarding nutritional recommendations; 2) the fact widely recognized in the scientific literature that an optimal nutrition allows to achieve the maximum performance of an athlete (both physically and cognitively), promoting fast recovery and decreasing risks of sports injuries and illnesses. However, only few studies carried out a long term nutritional intervention to improve nutritional practices of athletes and it could not be found any research with basketball players; 3) the high correlation between the rate of perceived exertion (RPE) and physiological variables related to the performance of physical exercise (e.g.: heart rate, maximum consumption of oxygen or blood lactate) and multiple studies showing the attenuation of RPE during exercise due to the intake of certain nutrients (especially carbohydrates), while none of them was developed in basketball; 4) correlation between nutritional intake and Session-RPE has been recently studied for the first time. Session-RPE method has been validated in basketball players and other team sports as an indicator of internal workload, sports performance and exercise intensity; 5) fatigue is considered one of the main influential factor on RPE and sport performance. It has also been observed that carbohydrates intake may delay or mitigate the onset of fatigue and, thus, decrease the perceived exertion and the internal training load, which could improve sports performance and training-induced adaptations; 6) there are few studies evaluating the influence of nutrient intake on Session-RPE and only one of them has been carried out with basketball players. Moreover, it has not been analyzed the possible effects of the adequacy of players’ nutritional habits through a nutritional intervention on Session-RPE and fatigue, variables that could be decreased for all training session and competition games because of an improvement of daily nutritional intake. Therefore, this work begins with an introduction that provides the conceptual framework of this research focused on the key role of nutrition in sport, as well as on the current nutritional recommendations for athletes and specifically for basketball players. In addition, previous nutritional interventions carried out with other athletes are described, as well as consequential modifications on their food pattern, coinciding with the first objective of the present study. Subsequently, RPE, Session-RPE and fatigue are analyzed, with focus on their correlation with physical workload, training intensity, sports performance and recovery. Finally, all the aforementioned aspects (nutritional intake, RPE and fatigue) were combined in order to know the current status of the relation between each other, this being the base for the second objective of this study. Subsequently, the objectives mentioned above are explained, continuing with the explanation of the methodology used in the study. The methodology consisted of a case-study design, carrying out a long term nutritional intervention with three professional basketball players (each player = one case study; n = 1), in order to adapt their nutritional intake to nutritional recommendations. At the same time, the individual response of each player to the intervention was analyzed for the two main objectives of the study. Each player completed a food diary (7 days; weighing food) in three moments: before, during and at the end of the intervention. In addition, the Session-RPE and fatigue were daily recorded throughout the study for all trainings (training with ball and resistance training) and competition games. At the same time, other potentially influential variables such as mood state and sleeping were daily controlled throughout the study. Data analysis consisted in descriptive statistics calculation for all the variables of the study, the comparison between nutritional intake (evaluated at different times) and nutritional recommendations and a non-parametric mean comparison between pre intervention and during intervention periods was made by Wilcoxon test (repeated measurements) for all variables too. Finally, the changes in nutritional intake, mood state and sleeping were correlated with the perceived exertion and fatigue through correctional study (Tau_b de Kendall). After the methodology, the study results and the associated discussion are presented. The discussion is based on the current scientific evidence that contributes to understand the relation between Session-RPE, fatigue and nutrition throughout the competitive season. The main findings and results analysis can be summarized as follows: 1) the three professional basketball players initially had inadequate nutritional habits and this clearly shows the need of a sports nutritionist in the coaching staff of professional teams; (2) the major deficiencies of the three players’ diet corresponded to a pronounced deficit of energy intake and carbohydrates consumption which were reduced with nutritional intervention; (3) the excessive intake of total fat, saturated fatty acids, ethanol and protein found in some cases were also adapted to the recommendations after the intervention; (4) Session-RPE mean and fatigue of a certain period of the competition season, could be decreased in an individual player by increasing his carbohydrates intake in the long term, if there are no relevant psycho-emotional disorders; (5) the behavior of the Session-RPE in competition games does not seem to be influenced by the nutritional factors modified in this study. They seem to depend much more on the variation of external non-controllable factors associated with the professional basketball games. Given these results, the different characteristics of each player and the diverse responses observed after the intervention in each individual for all the variables, reinforced the importance of the use of a case study design for research with elite athletes as well as personalized nutritional counselling. In the same way, the different responses obtained for RPE and fatigue in the long term for each player due to modification of nutritional habits, show that there is a dependence of such variables on the physical, psychosocial, emotional and contextual characteristics of each player. Therefore it is proposed that the rigorous control of the qualitative variables that seem to influence the RPE and fatigue in the long term, may facilitate the understanding of data and the determination of unknown factors that could influence these variables. Finally, because Session-RPE is a direct indicator of the internal load of training (psycho-physiological stress experienced by the athlete), the possible attenuation of Session-RPE through the improvement in nutritional habits, would allow to apply the planned external loads of training with less internal stress and better recovery between sessions, with a decrease in fatigue, despite of the advance of the season.
Resumo:
CHAPTER II - This study evaluated the effects of two different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of two types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29 ± 0.1 to 2.33 ± 0.09 after MICE and from 2.30 ± 0.08 to 2.23 ± 0.12 after HIIE. In MICE has occurred an increase in the mean corpuscular volume, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected the erythrocyte osmotic stability, which increased after MICE and decreased after HIIE.
Resumo:
The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF- α , IL-1 β , and NF- κ B) and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1 α , and AMPK phosphorylation) in quadriceps of rats. Male Wistar rats at 3 (young) and 18 months (middle-aged rats) of age were divided into nonexercised (NE) and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a) running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b) these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c) running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d) these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.
Resumo:
Background data: Technology and physical exercise can enhance physical performance during aging. Objective: The purpose of this study was to investigate the effects of infrared-light-emitting diode (LED) illumination (850 nm) applied during treadmill training. Materials and methods: Twenty postmenopausal women participated in this study. They were randomly divided into two groups. The LED group performed treadmill training associated with infrared-LED illumination (n = 10) and the control group performed only treadmill training (n = 10). The training was performed during 3 months, twice a week during 30 min at intensities between 85 and 90% of maximal heart rate. The irradiation parameters were 31 mW/cm(2), treatment time 30 min, 14,400 J of total energy and 55.8 J/cm(2) of fluence. Physiological, biomechanical, and body composition parameters were measured at the baseline and after 3 months. Results: Both groups improved the time of tolerance limit (Tlim) (p < 0.05) during submaximal constant-speed testing. The peak torque did not differ between groups. However, the results showed significantly higher values of power [from 56 +/- 10 to 73 +/- 8W (p = 0.002)] and total work [from 1,537 +/- 295 to 1,760 +/- 262 J (p = 0.006)] for the LED group when compared to the control group [power: from 58 +/- 14 to 60 +/- 15W (p >= 0.05) and total work: from 1,504 +/- 404 to 1,622 +/- 418 J (p >= 0.05)]. The fatigue significantly increased for the control group [from 51 +/- 6 to 58 +/- 5 % (p = 0.04)], but not for the LED group [from 60 +/- 10 to 60 +/- 4 % (p >= 0.05)]. No significant differences in body composition were observed for either group. Conclusions: Infrared-LED illumination associated with treadmill training can improve muscle power and delay leg fatigue in postmenopausal women.
Resumo:
While the physiological adaptations that occur following endurance training in previously sedentary and recreationally active individuals are relatively well understood, the adaptations to training in already highly trained endurance athletes remain unclear. While significant improvements in endurance performance and corresponding physiological markers are evident following submaximal endurance training in sedentary and recreationally active groups, an additional increase in submaximal training (i.e. volume) in highly trained individuals does not appear to further enhance either endurance performance or associated physiological variables [e.g. peak oxygen uptake (V-dot O2peak), oxidative enzyme activity]. It seems that, for athletes who are already trained, improvements in endurance performance can be achieved only through high-intensity interval training (HIT). The limited research which has examined changes in muscle enzyme activity in highly trained athletes, following HIT, has revealed no change in oxidative or glycolytic enzyme activity, despite significant improvements in endurance performance (p < 0.05). Instead, an increase in skeletal muscle buffering capacity may be one mechanism responsible for an improvement in endurance performance. Changes in plasma volume, stroke volume, as well as muscle cation pumps, myoglobin, capillary density and fibre type characteristics have yet to be investigated in response to HIT with the highly trained athlete. Information relating to HIT programme optimisation in endurance athletes is also very sparse. Preliminary work using the velocity at which V-dot O2max is achieved (Vmax) as the interval intensity, and fractions (50 to 75%) of the time to exhaustion at Vmax (Tmax) as the interval duration has been successful in eliciting improvements in performance in long-distance runners. However, Vmax and Tmax have not been used with cyclists. Instead, HIT programme optimisation research in cyclists has revealed that repeated supramaximal sprinting may be equally effective as more traditional HIT programmes for eliciting improvements in endurance performance. Further examination of the biochemical and physiological adaptations which accompany different HIT programmes, as well as investigation into the optimal HIT programme for eliciting performance enhancements in highly trained athletes is required.
Resumo:
This study examined the effects of four high-intensity interval-training (HIT) sessions performed over 2 weeks on peak volume of oxygen uptake (VO2peak), the first and second ventilatory thresholds (UT VT2) and peak power output (PPO) in highly trained cyclists. Fourteen highly trained male cyclists (VO2peak = 67.5 +/- 3.7 ml . kg(-1) . min(-1)) performed a ramped cycle test to determine VO2peak VT1 VT2, and PPO. Subjects were divided equally into a HIT group and a control group. The HIT group performed four HIT sessions (20 x 60 s at PPO, 120 s recovery); the V-02peak test was repeated <I wk after the HIT program. Control subjects maintained their regular training program and were reassessed under the same timeline. There was no change in V0(2peak) for either group; however, the HIT group showed a significantly greater increase in VT1, (+22% vs. -3%), VT2 (+15% vs. -1%), and PPO (+4.3 vs. -.4%) compared to controls (all P <.05). This study has demonstrated that HIT can improve VT1, VT2,, and PPO, following only four HIT sessions in already highly trained cyclists.
Resumo:
Exercise training has an important role in the prevention and treatment of hypertension, but its effects on the early metabolic and hemodynamic abnormalities observed in normotensive offspring of hypertensive parents (FH+) have not been studied. We compared high-intensity interval (aerobic interval training, AIT) and moderate-intensity continuous exercise training (CMT) with regard to hemodynamic, metabolic and hormonal variables in FH+ subjects. Forty-four healthy FH+ women (25.0+/-4.4 years) randomized to control (ConFH+) or to a three times per week equal-volume AIT (80-90% of VO(2MAX)) or CMT (50-60% of VO(2MAX)) regimen, and 15 healthy women with normotensive parents (ConFH-; 25.3+/-3.1 years) had their hemodynamic, metabolic and hormonal variables analyzed at baseline and after 16 weeks of follow-up. Ambulatorial blood pressure (ABP), glucose and cholesterol levels were similar among all groups, but the FH+ groups showed higher insulin, insulin sensitivity, carotid-femoral pulse wave velocity (PWV), norepinephrine and endothelin-1 (ET-1) levels and lower nitrite/ nitrate (NOx) levels than ConFH- subjects. AIT and CMT were equally effective in improving ABP (P<0.05), insulin and insulin sensitivity (P<0.001); however, AIT was superior in improving cardiorespiratory fitness (15 vs. 8%; P<0.05), PWV (P<0.01), and BP, norepinephrine, ET-1 and NOx response to exercise (P<0.05). Exercise intensity was an important factor in improving cardiorespiratory fitness and reversing hemodynamic, metabolic and hormonal alterations involved in the pathophysiology of hypertension. These findings may have important implications for the exercise training programs used for the prevention of inherited hypertensive disorder. Hypertension Research (2010) 33, 836-843; doi:10.1038/hr.2010.72; published online 7 May 2010
Resumo:
RAMOS, D. S. C. R. OLIVO. F. D. QUIRINO SANTOS LOPES, A. C. TOLEDO, M. A. MARTINS, R. A. LAZO OSORIO. M. DOLHNIKOFF, W. RIBEIRO, and R. R VIEIRA. Low-Intensity Swimming Training Partially Inhibits Lipopolysaccharide-Induced Acute Lung Injury. Med. Sci. Sports Exerc.. Vol. 42, No. 1, pp. 113-119, 2010. Background: Aerobic exercise-decreases pulmonary inflammation and remodeling in experimental models of allergic asthma. However, the effects of aerobic exercise oil pulmonary inflammation of nonallergic Origin, such as in experimental models of acute long injury induced by lipopolysaccharide (LPS), have not been evaluated. Objective: The present study evaluated file effects of aerobic exercise in a model of LPS-induced acute lung injury. Methods: BALB/c mice were divided into four groups: Control, Aerobic Exercise, LPS, and Aerobic Exercise + LPS. Swimming tests were conducted at baseline and at 3 and 6 wk. Low-Intensity swimming training was performed for 6 wk, four times per week, 60 min per session. Intranasal LPS (1 mg.kg(-1) (60 mu g per mouse)) was instilled 24 It after the last swimming physical test in the LPS and Aerobic Exercise + LPS mice, and the animals were studied 24 It after LPS instillation. Exhaled nitric oxide, respiratory mechanics, total and differential cell Counts in bronchoalveolar lavage, and lung parenchymal inflammation and remodeling were evaluated. Results: LPS instillation resulted in increased levels of exhaled nitric oxide (P < 0.001), higher numbers of neutrophils in file bronchoalveolar lavage (P < 0.001) and in the lung parenchyma (P < 0.001), and decreased lung tissue resistance (P < 0.05) and volume proportion of elastic fibers (P < 0.01) compared with the Control group. Swim training in LPS-instilled animals resulted in significantly lower exhaled nitric oxide levels (P < 0.001) and fewer nelltrophils in the bronchoalveolar lavage (P < 0.001) and the lung parenchyma (P < 0.01) compared with the LPS group. Conclusions: These results Suggest that low-intensity swimming training inhibits lung neutrophilic inflammation, but not remodeling and impaired lung mechanics, in a model of LPS-induced acute lung injury.
Resumo:
The aim of this study was to compare the effects of two high-intensity, treadmill interval-training programs on 3000-m and 5000-m running performance. Maximal oxygen uptake ((V) over dot O-2max), the running speed associated with (V) over dot O-2max (nu (V) over dot O-2max), the time for which nu (V) over dot O-2max can be maintained (T-max), running economy (RE), ventilatory threshold (VT) and 3000-m and 5000-m running times were determined in 27 well-trained runners. Subjects were then randomly assigned to three groups; (1) 60% T-max (2) 70% T-max and (3) control. Subjects in the control group continued their normal training and subjects in the two T-max groups undertook a 4-week treadmill interval-training program with the intensity set at nu (V) over dot O-2max and the interval duration at the assigned T-max. These subjects completed two interval-training sessions per week (60% T-max = six intervals/session, 70% T-max group = five intervals/session). Subjects were re-tested on all parameters at the completion of the training program. There was a significant improvement between pre- and post-training values in 3000-m time trial (TT) performance in the 60% T-max group compared to the 70% T,,a, and control groups [mean (SE); 60% T-max = 17.6 (3.5) s, 70% T-max = 6.3 (4.2) s, control = 0.5 (7.7) s]. There was no significant effect of the training program on 5000-m TT performance [60% T-max = 25.8 (13.8) s, 70% T-max = 3.7 (11.6) s, control = 9.9 (13.1) s]. Although there were no significant improvements in (V) over dot O-2max, nu (V) over dot (2max) and RE between groups, changes in (V) over dot O-2max and RE were significantly correlated with the improvement in the 3000-m TT. Furthermore, VT and T-max were significantly higher in the 60% Tmax group post-compared to pre-training. In conclusion, 3000-m running performance can be significantly improved in a group of well-trained runners, using a 4-week treadmill interval training program at nu (V) over dot O-2max with interval durations of 60% T-max.