881 resultados para tracking
Resumo:
Tracking/remote monitoring systems using GNSS are a proven method to enhance the safety and security of personnel and vehicles carrying precious or hazardous cargo. While GNSS tracking appears to mitigate some of these threats, if not adequately secured, it can be a double-edged sword allowing adversaries to obtain sensitive shipment and vehicle position data to better coordinate their attacks, and to provide a false sense of security to monitoring centers. Tracking systems must be designed with the ability to perform route-compliance and thwart attacks ranging from low-level attacks such as the cutting of antenna cables to medium and high-level attacks involving radio jamming and signal / data-level simulation, especially where the goods transported have a potentially high value to terrorists. This paper discusses the use of GNSS in critical tracking applications, addressing the mitigation of GNSS security issues, augmentation systems and communication systems in order to provide highly robust and survivable tracking systems.
Resumo:
This paper describes a secure framework for tracking applications that use the Galileo signal authentication services. First a number of limitations that affect the trust of critical tracking applications, even in presence of authenticated GNSS signals, are detailed. Requirements for secure tracking are then introduced; detailing how the integrity characteristics of the Galileo authentication could enhance the security of active tracking applications. This paper concludes with a discussion of our existing tracking technology using a Siemens TC45 GSM/GPRS module and future development utilizing our previously proposed trusted GNSS receiver.
Resumo:
In this paper, we present the design and construction of a prototype target tracking system. The experimental set up consists of three main modules for moving the object, detecting the motion of the object and its tracking. The mechanism for moving the object includes an object and two stepper motors and their driving and control circuitry. The detection of the object’s motion is realized by photo switch array. The tracking mechanism consists of a laser beam and two DC servomotors and their associated circuitry. The control algorithm is a standard fuzzy logic controller. The system is designed to operate in two modes in such a way that the role of target and tracker can be interchanged. Experimental results indicate that the fuzzy controller is capable of controlling the system in both modes.
Resumo:
Within a surveillance video, occlusions are commonplace, and accurately resolving these occlusions is key when seeking to accurately track objects. The challenge of accurately segmenting objects is further complicated by the fact that within many real-world surveillance environments, the objects appear very similar. For example, footage of pedestrians in a city environment will consist of many people wearing dark suits. In this paper, we propose a novel technique to segment groups and resolve occlusions using optical flow discontinuities. We demonstrate that the ratio of continuous to discontinuous pixels within a region can be used to locate the overlapping edges, and incorporate this into an object tracking framework. Results on a portion of the ETISEO database show that the proposed algorithm results in improved tracking performance overall, and improved tracking within occlusions.
Resumo:
The psychological contract has emerged over the past 60 years as a key analytical device for both academics and practitioners to conceptualise and explain the employment relationship. However, despite the recognised import of this field, some authors suggest it has fallen into a ‘methodological rut’ and is neglecting to empirically assess basic theoretical tenets of the concept – such as the temporal and individualised, subjective nature of the construct. This paper describes the research design of a longitudinal, mixed methods study to explore development and change in the psychological contract and outline how the use of individual growth modelling can be a powerful tool in analysing the type of quantitative data collected. Finally, by briefly outlining the benefits of this approach, the paper seeks to offer an alternative methodology to explore the dynamic and intra-individual processes within the psychological contract domain.
Resumo:
In this paper, a method has been developed for estimating pitch angle, roll angle and aircraft body rates based on horizon detection and temporal tracking using a forward-looking camera, without assistance from other sensors. Using an image processing front-end, we select several lines in an image that may or may not correspond to the true horizon. The optical flow at each candidate line is calculated, which may be used to measure the body rates of the aircraft. Using an Extended Kalman Filter (EKF), the aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and the location of the horizon. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To test the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42◦ and 0.71◦ respectively when compared with a truth attitude source. The Cessna flight resulted in pitch and roll error standard deviations of 1.79◦ and 1.75◦ respectively. The benefits of selecting and tracking the horizon using a motion model and optical flow rather than naively relying on the image processing front-end is also demonstrated.
Resumo:
In recent years, ocean scientists have started to employ many new forms of technology as integral pieces in oceanographic data collection for the study and prediction of complex and dynamic ocean phenomena. One area of technological advancement in ocean sampling if the use of Autonomous Underwater Vehicles (AUVs) as mobile sensor plat- forms. Currently, most AUV deployments execute a lawnmower- type pattern or repeated transects for surveys and sampling missions. An advantage of these missions is that the regularity of the trajectory design generally makes it easier to extract the exact path of the vehicle via post-processing. However, if the deployment region for the pattern is poorly selected, the AUV can entirely miss collecting data during an event of specific interest. Here, we consider an innovative technology toolchain to assist in determining the deployment location and executed paths for AUVs to maximize scientific information gain about dynamically evolving ocean phenomena. In particular, we provide an assessment of computed paths based on ocean model predictions designed to put AUVs in the right place at the right time to gather data related to the understanding of algal and phytoplankton blooms.
Resumo:
An autonomous underwater vehicle (AUV) is expected to operate in an ocean in the presence of poorly known disturbance forces and moments. The uncertainties of the environment makes it difficult to apply open-loop control scheme for the motion planning of the vehicle. The objective of this paper is to develop a robust feedback trajectory tracking control scheme for an AUV that can track a prescribed trajectory amidst such disturbances. We solve a general problem of feedback trajectory tracking of an AUV in SE(3). The feedback control scheme is derived using Lyapunov-type analysis. The results obtained from numerical simulations confirm the asymptotic tracking properties of the feedback control law. We apply the feedback control scheme to different mission scenarios, with the disturbances being initial errors in the state of the AUV.
Resumo:
Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.
Resumo:
We consider the problem of object tracking in a wireless multimedia sensor network (we mainly focus on the camera component in this work). The vast majority of current object tracking techniques, either centralised or distributed, assume unlimited energy, meaning these techniques don't translate well when applied within the constraints of low-power distributed systems. In this paper we develop and analyse a highly-scalable, distributed strategy to object tracking in wireless camera networks with limited resources. In the proposed system, cameras transmit descriptions of objects to a subset of neighbours, determined using a predictive forwarding strategy. The received descriptions are then matched at the next camera on the objects path using a probability maximisation process with locally generated descriptions. We show, via simulation, that our predictive forwarding and probabilistic matching strategy can significantly reduce the number of object-misses, ID-switches and ID-losses; it can also reduce the number of required transmissions over a simple broadcast scenario by up to 67%. We show that our system performs well under realistic assumptions about matching objects appearance using colour.
Resumo:
Record 8 of 29
Resumo:
We describe a novel two stage approach to object localization and tracking using a network of wireless cameras and a mobile robot. In the first stage, a robot travels through the camera network while updating its position in a global coordinate frame which it broadcasts to the cameras. The cameras use this information, along with image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to track the objects. We present results with a nine node indoor camera network to demonstrate that this approach is feasible and offers acceptable level of accuracy in terms of object locations.
Resumo:
Understanding the motion characteristics of on-site objects is desirable for the analysis of construction work zones, especially in problems related to safety and productivity studies. This article presents a methodology for rapid object identification and tracking. The proposed methodology contains algorithms for spatial modeling and image matching. A high-frame-rate range sensor was utilized for spatial data acquisition. The experimental results indicated that an occupancy grid spatial modeling algorithm could quickly build a suitable work zone model from the acquired data. The results also showed that an image matching algorithm is able to find the most similar object from a model database and from spatial models obtained from previous scans. It is then possible to use the matched information to successfully identify and track objects.
Resumo:
Object identification and tracking have become critical for automated on-site construction safety assessment. The primary objective of this paper is to present the development of a testbed to analyze the impact of object identification and tracking errors caused by data collection devices and algorithms used for safety assessment. The testbed models workspaces for earthmoving operations and simulates safety-related violations, including speed limit violations, access violations to dangerous areas, and close proximity violations between heavy machinery. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of device and algorithm errors were investigated for safety planning purposes.
Resumo:
This paper develops a general theory of validation gating for non-linear non-Gaussian mod- els. Validation gates are used in target tracking to cull very unlikely measurement-to-track associa- tions, before remaining association ambiguities are handled by a more comprehensive (and expensive) data association scheme. The essential property of a gate is to accept a high percentage of correct associ- ations, thus maximising track accuracy, but provide a su±ciently tight bound to minimise the number of ambiguous associations. For linear Gaussian systems, the ellipsoidal vali- dation gate is standard, and possesses the statistical property whereby a given threshold will accept a cer- tain percentage of true associations. This property does not hold for non-linear non-Gaussian models. As a system departs from linear-Gaussian, the ellip- soid gate tends to reject a higher than expected pro- portion of correct associations and permit an excess of false ones. In this paper, the concept of the ellip- soidal gate is extended to permit correct statistics for the non-linear non-Gaussian case. The new gate is demonstrated by a bearing-only tracking example.