980 resultados para toxicity effect


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polyethylenimine (PEI) is an efficient nonviral gene delivery vector because of its high buffering capacity and DNA condensation ability. In our study, the amino groups on the polymeric backbone were acylated using acetic or propionic anhydride to alter the protonation behaviour and the hydrophilic/hydrophobic balance of the polymer. The concentration of acylated primary amines was determined using trinitrobenzene sulphonic acid assay. Results showed that our modified polymers had lower buffering capacities in solutions compared to PEI. The polymers were complexed with plasmid encoding enhanced green fluorescent protein at three different ratios (1:1, 1:2 and 1:10 w/w DNA to polymer) to form polyplexes and their toxicities and transfection efficiencies were evaluated in HEK 293 cells. Acylation reduced the number of primary amines on the polymer and the surface charge, improving haemocompatibility and reducing cytotoxicity. The reduction in the concentration of amino groups helped to optimise DNA compaction and facilitated polyplex dissociation in the cell, which increased transfection efficiency of the modified polymers compared to the parent polymer. Polymers with buffering capacities greater than 50% and less than 80% relative to PEI, showed higher transfection efficiencies than PEI. The propionic anhydride modified polymers had appropriate interactions with DNA which provided both DNA compaction and polyplex dissociation. These systems interacted better with the cell membrane because of their slightly higher lipophilicity and formed polyplexes which were less cytotoxic than polyplexes of acetic anhydride modified polymers. Among the vectors tested, 1:0.3 mol/mol PEI:propionic anhydride in a 1:2 w/w DNA:polymer composition provided the best transfection system with improved transfection efficiency and reduced cytotoxicity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tuberculosis (TB) is a major cause of morbidity and mortality throughout the world, and it is estimated that one-third of the world`s population is infected with Mycobacterium tuberculosis. Among a series of tested compounds, we have recently identified five synthetic chalcones which inhibit the activity of M. tuberculosis protein tyrosine phosphatase A (PtpA), an enzyme associated with M. tuberculosis infectivity. Kinetic studies demonstrated that these compounds are reversible competitive inhibitors. In this work we also carried out the analysis of the molecular recognition of these inhibitors on their macromolecular target, PtpA, through molecular modeling. We observed that the predominant determinants responsible for the inhibitory activity of the chalcones are the positions of the two methoxyl groups at the A-ring, that establish hydrogen bonds with the amino acid residues Arg17, His49, and Thr12 in the active site of PtpA, and the substitution of the phenyl ring for a 2-naphthyl group as B-ring, that undergoes p stacking hydrophobic interaction with the Trp48 residue from PtpA. Interestingly, reduction of mycobacterial survival in human macrophages upon inhibitor treatment suggests their potential use as novel therapeutics. The biological activity, synthetic versatility, and low cost are clear advantages of this new class of potential tuberculostatic agents. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Annual Ryegrass Toxicity (ARGT) is a potentially lethal disease affecting livestock grazing on pastures or consuming fodder that include annual ryegrass (Lolium rigidum) contaminated with corynetoxins. The corynetoxins (CTs), among the most lethal toxins produced in nature, are produced by the bacterium Rathayibacter toxicus that uses a nematode vector to attach to and infect the seedheads of L.rigidum. There is little known of the factors that control toxin production. Several studies have speculated that a bacteriophage specific to R.toxicus may be implicated in CT production. We have developed a PCR-based assay to test for both bacterium and phage in ryegrass material and results indicate that there is a correlation between phage and bacterial presence in all toxic ryegrass samples tested so far. This PCR-based technique may ultimately allow for a rapid, high-throughput screening assay to identify potentially toxic pastures and feed in the field. Currently, ~80% of the 45 Kb genome has been sequenced an investigation to further elucidate its potential role in toxin production.Furthermore, specific alterations in gene expression as a result of exposure to CTs or the closely related tunicamycins (TMs), which are commercially available and considered biologically indistinguishable from CTs, will be evaluated for use as biomarkers of exposure. The effects of both toxins will be analysed in vitro using a rat hepatocyte cell line and screened on a low-density DNA micro array “CT-Chip” that contains <100 selected rat hepatic genes. The results are expected to further define the bioequivalence of CTs and TMs and to identify levels of exposure that are related to specific toxic effects or have no adverse effect on livestock.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acute (24 h) toxicity tests were conducted to determine the toxicity of the fungicide chlorothalonil towards the freshwater bdelloid rotifer (Philodina acuticornis odiosa). Since rotifers are the dominant zooplankton species in many inland freshwater lakes in Australia, the influence of salinity on chlorothalonil toxicty was also assessed. The rotifers used in this study appeared to be reasonably tolerant to changes in salinity, with little mortality observed at 3760 µS cm-1, increasing thereafter at higher salinity. The bdelloid rotifers were, however, found to be highly sensitive to chlorothalonil (24 h LC50, 3.2 µg L-1) with results also suggesting that as salinity increases, so does toxicity (e.g., 24 h LC50 at 5000 µS cm-1, 0.5 µg L-1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anacardium occidentale L. (Anacardiaceae), popularly known as cajueiro is a native plant to Brazil, and largely used in popular medicine to treat ulcers, hypertension and diarrhea. In the present study, acute, 30-day subacute toxicity and genotoxicity assays were carried out. The crude extract did not produce toxic symptoms in rats in doses up to 2000 mg/kg. Based on biochemical analyses of renal and hepato-biliary functions, such as the level of urea, creatinine, transaminases and alkaline phosphatase, we determined that the extract is generally tolerated by rats. This was also confirmed by hematological and histopathological exams. Genotoxicity was accessed by the Ames test in Salmonella typhimurium strains TA97, TA98, TA 100, TA 102 and by the bone marrow micronucleus test in mice. The extract was shown to induce frameshift, base pair substitution and damage to the chromosomes. However, this effect was less deleterious than the clastogenic effect of ciclophosphamide. (c) 2006 Elsevier B.V.. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contamination with cadmium compounds poses high potential risk for the health of populations and for this reason the treatment of their toxic effects should urgently be established. The present study was carried out to determine whether or-tocopherol intake can protect tissues against damage induced by cadmium, and to clarify the contribution of superoxide radicals (O-2(-)) in this process. Cadmium chloride was tested for tissue damage by a single intraperitoneal injection of Cd2+ ions (2 mg Kg(-1)). To determine the potential therapeutic effect of Vitamin E, a group of Cd2+-treated rats received a drinking solution of or-tocopherol (40 mg l(-1)) for 15 days. Cadmium induced increased serum creatinine and total lactate dehydrogenase, reflecting renal and cardiac damage. The increased lipoperoxide and decreased Cu-Zn superoxide dismutase levels indicated the generation of superoxide radicals in cadmium-treated rats. Tocopherol induced increased serum high-density lipoprotein and depressed the toxic effects of Ca2+ alone, since creatinine and lactate dehydrogenase determinations were recovered to the control values. Tocopherol decreased lipoperoxide and led the superoxide dismutase activities to approach those of the control values. We concluded that superoxide radicals are produced as mediators of cadmium toxicity. Tocopherol possesses a significant anti-radical activity and inhibits the cadmium effect on superoxide dismutase activity. Tocopherol also protected tissues from the toxic effects of cadmium by a direct antioxidant action which decreased lipoperoxide formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nihB gene of Aspergillus nidulans was found to confer sensitivity to elevated concentrations of nitrite, compact morphology and absence of conidiation. The nihB locus was allocated to linkage group II and was recessive in heterozygous diploids. When the nihB1 mutant was grown on a mixture of nitrite plus NH4 + its sensitivity to nitrite was unchanged. A possible role for this gene in nitrite transport and/or the maintenance of membrane integrity is discussed. © 1992 Rapid Communications of Oxford Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contamination with cadmium compounds poses high potential risk for the health of populations and for this reason the treatment of their toxic effects should urgently be established. The present study was carried out to determine whether α-tocopherol intake can protect tissues against damage induced by cadmium, and to clarify the contribution of superoxide radicals (O 2 -) in this process. Cadmium chloride was tested for tissue damage by a single intraperitoneal injection of Cd 2+ ions (2 mg Kg -1). To determine the potential therapeutic effect of vitamin E, a group of Cd 2+-treated rats received a drinking solution of α-tocopherol (40 mg l -1) for 15 days. Cadmium induced increased serum creatinine and total lactate dehydrogenase, reflecting renal and cardiac damage. The increased lipoperoxide and decreased Cu-Zn superoxide dismutase levels indicated the generation of superoxide radicals in cadmium-treated rats. Tocopherol induced increased serum high-density lipoprotein and depressed the toxic effects of Ca 2+ alone, since creatinine and lactate dehydrogenase determinations were recovered to the control values. Tocopherol decreased lipoperoxide and led the superoxide dismutase activities to approach those of the control values. We concluded that superoxide radicals are produced as mediators of cadmium toxicity. Tocopherol possesses a significant anti-radical activity and inhibits the cadmium effect on superoxide dismutase activity. Tocopherol also protected tissues from the toxic effects of cadmium by a direct antioxidant action which decreased lipoperoxide formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Beta-toxin (CPB) is the essential virulence factor of C. perfringens type C causing necrotizing enteritis (NE) in different hosts. Using a pig infection model, we showed that CPB targets small intestinal endothelial cells. Its effect on the porcine intestinal epithelium, however, could not be adequately investigated by this approach. Using porcine neonatal jejunal explants and cryosections, we performed in situ binding studies with CPB. We confirmed binding of CPB to endothelial but could not detect binding to epithelial cells. In contrast, the intact epithelial layer inhibited CPB penetration into deeper intestinal layers. CPB failed to induce cytopathic effects in cultured polarized porcine intestinal epithelial cells (IPEC-J2) and primary jejunal epithelial cells. C. perfringens type C culture supernatants were toxic for cell cultures. This, however, was not inhibited by CPB neutralization. Our results show that, in the porcine small intestine, CPB primarily targets endothelial cells and does not bind to epithelial cells. An intact intestinal epithelial layer prevents CPB diffusion into underlying tissue and CPB alone does not cause direct damage to intestinal epithelial cells. Additional factors might be involved in the early epithelial damage which is needed for CPB diffusion towards its endothelial targets in the small intestine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon capture and storage is increasingly being considered one of the most efficient approaches to mitigate the increase of CO2 in the atmosphere associated with anthropogenic emissions. However, the environmental effects of potential CO2 leaks remain largely unknown. The amphipod Ampelisca brevicornis was exposed to environmental sediments collected in different areas of the Gulf of Cádiz and subjected to several pH treatments to study the effects of CO2-induced acidification on sediment toxicity. After 10 days of exposure, the results obtained indicated that high lethal effects were associated with the lowest pH treatments, except for the Ría of Huelva sediment test. The mobility of metals from sediment to the overlying seawater was correlated to a pH decrease. The data obtained revealed that CO2-related acidification would lead to lethal effects on amphipods as well as the mobility of metals, which could increase sediment toxicity.