818 resultados para total energy expenditure
Resumo:
Background Energy conserving processes reported in undernourished women during pregnancy are a recognised strategy to provide energy required to support fetal development. Women who are obese before conceiving arguably have sufficient fat stores to support the energy demands of pregnancy without the need to provoke energy conserving mechanisms. Objective We tested the hypothesis that obese women would demonstrate behavioural adaptation (i.e. decrease in self-selected walking (SSW) speed) but not metabolic compensation (i.e. decrease in resting metabolic rate (RMR) or metabolic cost of walking) during gestation. Design RMR, SSW speed, metabolic cost of walking, and anthropometry were measured in 23 women (BMI: 33.6 ± 2.5 kg/m2; 31 ± 4 years) at approximately weeks 15 (wk 15) and 30 (wk 30) of gestation. RMR was also measured in two cohorts of non-pregnant controls matched for age, weight and height of the pregnant cohort at wk 15 (N=23) and wk 30 (N=23). Results GWG varied widely (11.3 ± 5.4 kg) and 52% of women gained more weight than is recommended. RMR increased significantly by an average 177 ± 176 kcal/d (11±12%; P<0.0001); however the within-group variability was large. Both the metabolic cost of walking and SSW speed decreased significantly (P<0.01). While RMR increased in >80% of the cohort, the net oxygen cost of walking decreased in the same proportion of women. Conclusions While the increase in RMR was greater than was explained by weight gain, there was evidence of both behavioural and biological compensation in the metabolic cost of walking in obese women during gestation.
Resumo:
A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that "the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy". However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM), fat mass (FM)], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.
Resumo:
BACKGROUND/OBJECTIVEs A decline in resting energy expenditure (REE) beyond that predicted from changes in body composition has been noted following dietary-induced weight loss. However, it is unknown whether a compensatory downregulation in REE also accompanies exercise (EX)-induced weight loss, or whether this adaptive metabolic response influences energy intake (EI). SUBJECTS/METHODS Thirty overweight and obese women (body mass index (BMI)=30.6±3.6 kg/m2) completed 12 weeks of supervised aerobic EX. Body composition, metabolism, EI and metabolic-related hormones were measured at baseline, week 6 and post intervention. The metabolic adaptation (MA), that is, difference between predicted and measured REE was also calculated post intervention (MApost), with REE predicted using a regression equation generated in an independent sample of 66 overweight and obese women (BMI=31.0±3.9 kg/m2). RESULTS Although mean predicted and measured REE did not differ post intervention, 43% of participants experienced a greater-than-expected decline in REE (−102.9±77.5 kcal per day). MApost was associated with the change in leptin (r=0.47; P=0.04), and the change in resting fat (r=0.52; P=0.01) and carbohydrate oxidation (r=−0.44; P=0.02). Furthermore, MApost was also associated with the change in EI following EX (r=−0.44; P=0.01). CONCLUSIONS Marked variability existed in the adaptive metabolic response to EX. Importantly, those who experienced a downregulation in REE also experienced an upregulation in EI, indicating that the adaptive metabolic response to EX influences both physiological and behavioural components of energy balance.
Resumo:
This paper proposes a method for designing set-point regulation controllers for a class of underactuated mechanical systems in Port-Hamiltonian System (PHS) form. A new set of potential shape variables in closed loop is proposed, which can replace the set of open loop shape variables-the configuration variables that appear in the kinetic energy. With this choice, the closed-loop potential energy contains free functions of the new variables. By expressing the regulation objective in terms of these new potential shape variables, the desired equilibrium can be assigned and there is freedom to reshape the potential energy to achieve performance whilst maintaining the PHS form in closed loop. This complements contemporary results in the literature, which preserve the open-loop shape variables. As a case study, we consider a robotic manipulator mounted on a flexible base and compensate for the motion of the base while positioning the end effector with respect to the ground reference. We compare the proposed control strategy with special cases that correspond to other energy shaping strategies previously proposed in the literature.
Resumo:
There is currently some debate about whether the energy expenditure of domestic tasks is sufficient to confer health benefits. The aim of this study was therefore to measure the energy cost of five activities commonly undertaken by mothers of young children. Seven women with at least one child younger than five years of age spent 15 minutes in each of the following activities: sitting quietly, vacuum cleaning, washing windows, walking at moderate pace (approx 5km/hour), walking with a stroller and grocery shopping in a super-market. Each of the six 'trials' was completed on the same day, in random order. A carefully calibrated portable gas analyser was used to measure oxygen uptake during each activity, and data were converted to units of energy expenditure (METS). Vacuum cleaning, washing windows and walking with and without a stroller were found to be 'moderate intensity activities' (3 to 6 METs), but supermarket shopping did not reach this criterion. The MET values for these activities were similar to those reported in the Compendium of Physical Activities (Ainsworth et al., 2000). However, the energy expenditures of walking, both with and without a stroller, were higher than those reported in the Compendium. The findings suggest that some of the tasks associated with domestic caring duties are conducted at an intensity which is sufficient to confer some health benefit. Such benefits will only accrue however if the daily duration of these activities is sufficient to meet current guidelines.
Resumo:
Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. Purpose: The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. Methods: One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous intensity games or sports. During each trial, participants wore an ActiGraph GTIM on the right hip, and (V) Over dotO(2) was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square en-or (RMSE). Results: As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. Conclusions: ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.
Resumo:
Purpose The aim of this study was to assess the predictive validity of three accelerometer prediction equations (Freedson et aL, 1997; Trost et aL, 1998; Puyau et al., 2002) for energy expenditure (EE) during overland walking and running in children and adolescents. Methods 45 healthy children and adolescents aged 10-18 completed the following protocol, each task 5-mins in duration, with a 5-min rest period in between; walking normally; walking briskly; running easily and running fast. During each task participants wore MTI (WAM 7164) Actigraphs on the left and right hips. VO2 was monitored breath by breath using the Cosmed K4b2 portable indirect calorimetry system. For each prediction equation, difference scores were calculated as EE measured minus EE predicted. The percentage of 1-min epochs correctly categorized as light (<3 METs), moderate (3-5.9 METs), and vigorous (≥6 METS) was also calculated. Results The Freedson and Trost equations consistently overestimated MET level. The level of overestimation was statistically significant across all tasks for the Freedson equation, and was significant for only the walking tasks for the Trost equation. The Puyau equation consistently underestimated AEE with the exception of the walking normally task. In terms of categorisation, the Freedson equation (72.8% agreement) demonstrated better agreement than the Puyau (60.6%). Conclusions These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overland walking and running. However, the cut points generated by these equations maybe useful for classifying activity as either, light, moderate, or vigorous.
Resumo:
Although a number of studies have examined the role of gastric emptying (GE) in obesity, the influences of habitual physical activity level, body composition and energy expenditure (EE) on GE have received very little consideration. In this study, we have compared GE in active and inactive males, and we have characterised relationships with body composition (fat and fat free mass) and EE. Forty-four males (Active: n=22, Inactive: n=22; range BMI 21-36kg/m2; range percent fat mass 9-42%) were studied, with GE of a standardised (1676 kJ) pancake meal being assessed by 13C-octanoic acid breath test, body composition by air displacement plethysmography, resting metabolic rate (RMR) by indirect calorimetry and activity EE (AEE) by accelerometry. Results showed that GE was faster in active compared to inactive males (mean ±SD half time (t1/2): Active: 157±18 and Inactive: 179±21 min, p<0.001). When data from both groups were pooled, GE t1/2 was associated with percent fat mass (r=0.39, p<0.01) and AEE (r =-0.46, p<0.01). After controlling for habitual physical activity status, the association between AEE and GE remained, but not that for percent fat mass and GE. BMI and RMR were not associated with GE. In summary, faster GE is considered to be a marker of a habitually active lifestyle in males, and is associated with a higher AEE and lower percent fat mass. The possibility that GE contributes to a gross physiological regulation (or dysregulation) of food intake with physical activity level deserves further investigation.
Resumo:
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.
Resumo:
Background and Aims: The objective of the study was to compare data obtained from the Cosmed K4 b2 and the Deltatrac II™ metabolic cart for the purpose of determining the validity of the Cosmed K4 b2 in measuring resting energy expenditure. Methods: Nine adult subjects (four male, five female) were measured. Resting energy expenditure was measured in consecutive sessions using the Cosmed K4 b2, the Deltatrac II™ metabolic cart separately and the Cosmed K4 b2 and Deltatrac II™ metabolic cart simultaneously, performed in random order. Resting energy expenditure (REE) data from both devices were then compared with values obtained from predictive equations. Results: Bland and Altman analysis revealed a mean bias for the four variables, REE, respiratory quotient (RQ), VCO2, VO2 between data obtained from Cosmed K4 b2 and Deltatrac II™ metabolic cart of 268 ± 702 kcal/day, -0.0±0.2, 26.4±118.2 and 51.6±126.5 ml/min, respectively. Corresponding limits of agreement for the same four variables were all large. Also, Bland and Altman analysis revealed a larger mean bias between predicted REE and measured REE using Cosmed K4 b2 data (-194±603 kcal/day) than using Deltatrac™ metabolic cart data (73±197 kcal/day). Conclusions: Variability between the two devices was very high and a degree of measurement error was detected. Data from the Cosmed K4 b2 provided variable results on comparison with predicted values, thus, would seem an invalid device for measuring adults. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Background Several approaches have been used to express energy expenditure in youth, but no consensus exists as to which best normalizes data for the wide range of ages and body sizes across a range of physical activities. This study examined several common metrics for expressing energy expenditure to determine whether one metric can be used for all healthy children. Such a metric could improve our ability to further advance the Compendium of Physical Activities for Youth. Methods A secondary analysis of oxygen uptake (VO2) data obtained from five sites was completed, that included 947 children ages 5 to 18 years, who engaged in 14 different activities. Resting metabolic rate (RMR) was computed based on Schofield Equations [Hum Nutr Clin Nut. 39(Suppl 1), 1985]. Absolute oxygen uptake (ml.min-1), oxygen uptake per kilogram body mass (VO2 in ml.kg-1.min-1), net oxygen uptake (VO2 – resting metabolic rate), allometric scaled oxygen uptake (VO2 in ml.kg-0.75.min-1) and YOUTH-MET (VO2.[resting VO2] -1) were calculated. These metrics were regressed with age, sex, height, and body mass. Results Net and allometric-scaled VO2, and YOUTH-MET were least associated with age, sex and physical characteristics. For moderate-to-vigorous intensity activities, allometric scaling was least related to age and sex. For sedentary and low-intensity activities, YOUTH-MET was least related to age and sex. Conclusions No energy expenditure metric completely eliminated the influence of age, physical characteristics, and sex. The Adult MET consistently overestimated EE. YOUTH-MET was better for expressing energy expenditure for sedentary and light activities, whereas allometric scaling was better for moderate and vigorous intensity activities. From a practical perspective, The YOUTH-MET may be the more feasible metric for improving of the Compendium of Physical Activities for Youth.
Resumo:
In this article we study the problem of joint congestion control, routing and MAC layer scheduling in multi-hop wireless mesh network, where the nodes in the network are subjected to maximum energy expenditure rates. We model link contention in the wireless network using the contention graph and we model energy expenditure rate constraint of nodes using the energy expenditure rate matrix. We formulate the problem as an aggregate utility maximization problem and apply duality theory in order to decompose the problem into two sub-problems namely, network layer routing and congestion control problem and MAC layer scheduling problem. The source adjusts its rate based on the cost of the least cost path to the destination where the cost of the path includes not only the prices of the links in it but also the prices associated with the nodes on the path. The MAC layer scheduling of the links is carried out based on the prices of the links. We study the e�ects of energy expenditure rate constraints of the nodes on the optimal throughput of the network.