869 resultados para tilted algebras
Resumo:
We have developed a novel human facial tracking system that operates in real time at a video frame rate without needing any special hardware. The approach is based on the use of Lie algebra, and uses three-dimensional feature points on the targeted human face. It is assumed that the roughly estimated facial model (relative coordinates of the three-dimensional feature points) is known. First, the initial feature positions of the face are determined using a model fitting technique. Then, the tracking is operated by the following sequence: (1) capture the new video frame and render feature points to the image plane; (2) search for new positions of the feature points on the image plane; (3) get the Euclidean matrix from the moving vector and the three-dimensional information for the points; and (4) rotate and translate the feature points by using the Euclidean matrix, and render the new points on the image plane. The key algorithm of this tracker is to estimate the Euclidean matrix by using a least square technique based on Lie algebra. The resulting tracker performed very well on the task of tracking a human face.
Resumo:
This paper deals withmodel generation for equational theories, i.e., automatically generating (finite) models of a given set of (logical) equations. Our method of finite model generation and a tool for automatic construction of finite algebras is described. Some examples are given to show the applications of our program. We argue that, the combination of model generators and theorem provers enables us to get a better understanding of logical theories. A brief comparison between our tool and other similar tools is also presented.
Resumo:
The generation of models and counterexamples is an important form of reasoning. In this paper, we give a formal account of a system, called FALCON, for constructing finite algebras from given equational axioms. The abstract algorithms, as well as some implementation details and sample applications, are presented. The generation of finite models is viewed as a constraint satisfaction problem, with ground instances of the axioms as constraints. One feature of the system is that it employs a very simple technique, called the least number heuristic, to eliminate isomorphic (partial) models, thus reducing the size of the search space. The correctness of the heuristic is proved. Some experimental data are given to show the performance and applications of the system.
Resumo:
Quantum-dot laser diodes (QD-LDs) with a Fabry-Perot cavity and quantum-dot semiconductor optical amplifiers (QD-SOAs) with 7° tilted cavity were fabricated. The influence of a tilted cavity on optoelectronic active devices was also investigated. For the QD-LD, high performance was observed at room temperature. The threshold current was below 30 mA and the slope efficiency was 0.36 W/A. In contrast, the threshold current of the QD-SOA approached 1000 mA, which indicated that low facet reflectivity was obtained due to the tilted cavity design.A much more inverted carrier population was found in the QD-SOA active region at high operating current, thus offering a large optical gain and preserving the advantages of quantum dots in optical amplification and processing applications. Due to the inhomogeneity and excited state transition of quantum dots, the full width at half maximum of the electroluminescence spectrum of the QD-SOA was 81.6 nm at the injection current of 120 mA, which was ideal for broad bandwidth application in a wavelength division multiplexing system. In addition, there was more than one lasing peak in the lasing spectra of both devices and the separation of these peak positions was 6-8 nm,which is approximately equal to the homogeneous broadening of quantum dots.
Resumo:
We investigate the group valued functor G(D) = D*/F*D' where D is a division algebra with center F and D' the commutator subgroup of D*. We show that G has the most important functorial properties of the reduced Whitehead group SK1. We then establish a fundamental connection between this group, its residue version, and relative value group when D is a Henselian division algebra. The structure of G(D) turns out to carry significant information about the arithmetic of D. Along these lines, we employ G(D) to compute the group SK1(D). As an application, we obtain theorems of reduced K-theory which require heavy machinery, as simple examples of our method.
Resumo:
Abstract In the theory of central simple algebras, often we are dealing with abelian groups which arise from the kernel or co-kernel of functors which respect transfer maps (for example K-functors). Since a central simple algebra splits and the functors above are “trivial” in the split case, one can prove certain calculus on these functors. The common examples are kernel or co-kernel of the maps Ki(F)?Ki(D), where Ki are Quillen K-groups, D is a division algebra and F its center, or the homotopy fiber arising from the long exact sequence of above map, or the reduced Whitehead group SK1. In this note we introduce an abstract functor over the category of Azumaya algebras which covers all the functors mentioned above and prove the usual calculus for it. This, for example, immediately shows that K-theory of an Azumaya algebra over a local ring is “almost” the same as K-theory of the base ring. The main result is to prove that reduced K-theory of an Azumaya algebra over a Henselian ring coincides with reduced K-theory of its residue central simple algebra. The note ends with some calculation trying to determine the homotopy fibers mentioned above.