909 resultados para thermodynamic stability
Resumo:
The ligands 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic-11-methylphosphonic acid (H(5)te3a1p) and 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic acid (H(3)te3a) were synthesized, the former one for the first time. The syntheses of these ligands were achieved from reactions on 1,4,8,11-tetraazacyclotetradecane-1,4,8-tris( carbamoylmethyl) hydroiodide (te3am center dot HI), and compounds (Hte3am)(+), 1, and (H(7)te3a1p)(2+), 4, were characterized by X-ray diffraction. Structures of two other compounds resulting from side-reactions, (H(2)te2lac)(2+), 2, and (H(4)te2a2p(OEt2))(2+), 3, were also determined by X-ray diffraction. Potentiometric titrations of H(5)te3a1p and H(3)te3a were performed at 298.2 K and ionic strength 0.10 mol dm(-3) in NMe4NO3 to determine their protonation constants. H-1 and P-31 NMR titrations of H(5)te3a1p were carried out in order to determine the very high first protonation constant of this ligand and to elucidate the sequence of protonation. Potentiometric studies of the two ligands with Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ metal ions performed in the same experimental conditions showed that the complexes of H5te3a1p present very high thermodynamic stability while complexes of H(3)te3a, particularly Co2+ and Zn2+, are even more stable. P-31 NMR spectra of the cadmium(II) complex of H(5)te3a1p showed that the phosphonate moiety was coordinated to the metal ion. The UV-vis-NIR spectroscopic data and magnetic moment values of Co2+ and Ni2+ complexes of H(5)te3a1p and H(3)te3a together with the EPR of the corresponding Cu2+ complexes indicated that all these complexes adopt distorted octahedral coordination geometries in solution. This was confirmed by the single crystal structure of [Cu-2(Hte3a)(H2O)(3)Cl]Cl-0.5(ClO4)(0.5) center dot 2H(2)O that showed two distorted octahedral copper centres bridged by a N-acetate pendant arm with a Cu center dot center dot center dot Cu distance of 4.890(1) angstrom. The first one is encapsulated into the macrocyclic cavity surrounded by four nitrogen and two oxygen donors from the macrocycle, whereas the second one is on the periphery of the macrocycle and is coordinated to two oxygen atoms of one acetate pendant arm in chelating fashion, one chloride and three water molecules.
Resumo:
LRRK2 is a 250 kDa multidomain protein, mutations in which cause familial Parkinson's disease. Previously, we have demonstrated that the R1441C mutation in the ROC domain decreases GTPase activity. Here we show that the R1441C alters the folding properties of the ROC domain, lowering its thermodynamic stability. Similar to small GTPases, binding of different guanosine nucleotides alters the stability of the ROC domain, suggesting that there is an alteration in conformation dependent on GDP or GTP occupying the active site. GTP/GDP bound state also alters the self-interaction of the ROC domain, accentuating the impact of the R1441C mutation on this property. These data suggest a mechanism whereby the R1441C mutation can reduce the GTPase activity of LRRK2, and highlights the possibility of targeting the stability of the ROC domain as a therapeutic avenue in LRRK2 disease.
Resumo:
Two members of the tetradentate N-donor ligand families 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) currently being developed for separating actinides from lanthanides have been studied. It has been confirmed that CyMe4-BTPhen 2 has faster complexation kinetics than CyMe4-BTBP 1. The values for the HOMO−LUMO gap of 2 are comparable with those of CyMe4-BTBP 1 for which the HOMO−LUMO gap was previously calculated to be 2.13 eV. The displacement of BTBP from its bis-lanthanum(III) complex by BTPhen was observed by NMR, and constitutes the only direct evidence for the greater thermodynamic stability of the complexes of BTPhen. NMR competition experiments suggest the following order of bis-complex stability: 1:2 bis-BTPhen complex ≥ heteroleptic BTBP/BTPhen 1:2 bis-complex > 1:2 bis-BTBP complex. Kinetics studies on some bis-triazine N-donor ligands using the stopped-flow technique showed a clear relationship between the rates of metal ion complexation and the degree to which the ligand is preorganized for metal binding. The BTBPs must overcome a significant (ca. 12 kcal mol−1) energy barrier to rotation about the central biaryl C−C axis in order to achieve the cis−cis conformation that is required to form a complex, whereas the cis−cis conformation is fixed in the BTPhens. Complexation thermodynamics and kinetics studies in acetonitrile show subtle differences between the thermodynamic stabilities of the complexes formed, with similar stability constants being found for both ligands. The first crystal structure of a 1:1 complex of CyMe4-BTPhen 2 with Y(NO3)3 is also reported. The metal ion is 10- coordinate being bonded to the tetradentate ligand 2 and three bidentate nitrate ions. The tetradentate ligand is nearly planar with angles between consecutive rings of 16.4(2)°, 6.4(2)°, 9.7(2)°, respectively.
Resumo:
We have examined the thermodynamic stability of a-Fe2O3–Cr2O3 solid solutions as a function of temperature and composition, using a combination of statistical mechanics with atomistic simulation techniques based on classical interatomic potentials, and the addition of a model magnetic interaction Hamiltonian. Our calculations show that the segregation of the Fe and Cr cations is marginally favourable in energy compared to any other cation distribution, and in fact the energy of any cation configuration of the mixed system is always slightly higher than the combined energies of equivalent amounts of the pure oxides separately. However, the positive enthalpy of mixing is small enough to allow the stabilisation of highly disordered solid solutions at temperatures of B400 K or higher. We have investigated the degree of cation disorder and the effective cell parameters of the mixed oxide as functions of temperature and composition, and we discuss the effect of magnetic interactions and lattice vibrations on the stability of the solid solution.
Resumo:
There is an increasing interest in lipid nanoparticles because of their suitability for several administration routes. Thus, it becomes even more relevant the physicochemical characterization of lipid materials with respect to their polymorphism, lipid miscibility and stability, as well as the assessment of the effect of surfactant on the type and structure of these nanoparticles. This work focuses on the physicochemical characterization of lipid matrices composed of pure stearic acid or of mixtures of stearic acid-capric/caprylic triglycerides, for drug delivery. The lipids were analyzed by Differential Scanning Calorimetry (DSC), Wide Angle X-ray Diffraction (WAXD), Polarized Light Microscopy (PLM) and hydrophilic-lipophilic balance (HLB) in combination with selected surfactants to determine the best solid-to-liquid ratio. Based on the results obtained by DSC and WAXD, the selected qualitative and quantitative composition contributed for the production of stable nanoparticles, since the melting and the tempering processes provided important information on the thermodynamic stability of solid lipid matrices. The best HLB value obtained for stearic acid-capric/caprylic triglycerides was 13.8, achieved after combining these lipids with accepted surfactants (trioleate sorbitan and polysorbate 80 in the ratio of 10:90). The proposed combinations were shown useful to obtain a stable emulsion to be used as intermediate form for the production of lipid nanoparticles. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where aerosol optical depth >0.3). These changes increase the surface pressure in the smoke center, weaken the southward surface pressure gradient between northern and southern Amazonia, and consequently induce an anomalous moisture divergence in the smoke center and an anomalous convergence in northwestern Amazonia (5 degrees S-5 degrees N, 60 degrees W-70 degrees W). The increased atmospheric thermodynamic stability, surface pressure, and divergent flow in Southern Amazonia may inhibit synoptic cyclonic activities propagated from extratropical South America, and re-enforce winter-like synoptic cyclonic activities and rainfall in southeastern Brazil, Paraguay and northeastern Argentina. Citation: Zhang, Y., R. Fu, H. Yu, Y. Qian, R. Dickinson, M. A. F. Silva Dias, P. L. da Silva Dias, and K. Fernandes (2009), Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia, Geophys. Res. Lett., 36, L10814, doi: 10.1029/2009GL037180.
Resumo:
Boron compounds are widely used in synthetic chemistry. The synthesis of the compounds is relatively easy, presenting thermodynamic stability and synthetic versatility. Almost all of them show electrophilic reactivity. Recently, some boryllithium species have been reported as a base or a nucleophile in reaction with organic electrophiles in S(N)2 reactions. In the present work, the proton affinity (PA) of boryllithium compounds was calculated. These values can be useful as theoretical reference values and to provide valuable complementary information for the interpretation and discussion of the basicity of these compounds. The proton affinity was calculated using a theoretical method based on density functional theory and high-level theoretical methods through MP2 and G2MP2 levels of theory. In addition, some global and local reactivity indexes based on density functional theory (DFT) on boryllithium compounds were studied. In order to compare and discuss the chemical reactivity of these compounds, some analogues and electrophilic boron compounds were also studied. Our results showed a local and global nucleophilic reactivity of the boryllithium molecules in agreement with the experimental. reactivity. The boryllithium compounds revealed to be strong bases in comparison to other analogue compounds studied in this work.
Resumo:
Systemic amyloid light-chain (LC) amyloidosis is a disease process characterized by the pathological deposition of monoclonal LCs in tissue. All LC subtypes are capable of fibril formation although lambda chains, particularly those belonging to the lambda 6 type, are overrepresented. Here, we report the thermodynamic and in vitro fibrillogenic properties of several mutants of the lambda 6 protein 6aJL2 in which Pro7 and/or His8 was substituted by Ser or Pro. The H8P and H8S mutants were almost as stable as the wildtype protein and were poorly fibrillogenic. In contrast, the P7S mutation decreased the thermodynamic stability of 6aJL2 and greatly enhanced its capacity to form amyloid-like fibrils in vitro. The crystal structure of the P7S mutant showed that the substitution induced both local and long-distance effects, such as the rearrangement of the V(L) (variable region of the light chain)-V(L) interface. This mutant crystallized in two orthorhombic polymorphs, P2(1)2(1)2(1) and C222(1). In the latter, a monomer that was not arranged in the typical Bence-Jones dimer was observed for the first time. Crystal-packing analysis of the C222(1) lattice showed the establishment of intermolecular beta-beta interactions that involved the N-terminus and beta-strand B and that these could be relevant in the mechanism of LC fibril formation. Our results strongly suggest that Pro7 is a key residue in the conformation of the N-terminal sheet switch motif and, through long-distance interactions, is also critically involved in the contacts that stabilized the V(L) interface in lambda 6 LCs. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An improved on-site characterization of humic-rich hydrocolloids and their metal species in aquatic environments was the goal of the present approach. Both ligand exchange with extreme chelators ( diethylenetetraaminepentaacetic acid ( DTPA), ethylendiaminetetraacetic acid ( EDTA)) and metal exchange with strongly competitive cations (Cu(II)) were used on-site to characterize the conditional stability and availability of colloidal metal species in a humic-rich German bogwater lake ( Venner Moor, Munsterland). A mobile time-controlled tangential-flow ultrafiltration technique (cut-off: 1 kDa) was applied to differentiate operationally between colloidal metal species and free metal ions, respectively. DOC ( dissolved organic carbon) and metal determinations were carried out off-site using a home-built carbon analyzer and conventional ICP-OES ( inductively-coupled plasma-optical emission spectrometry), respectively. From the metal exchange equilibria obtained on-site the kinetic and thermodynamic stability of the original metal species ( Fe, Mn, Zn) could be characterized. Conditional exchange constants K ex obtained from aquatic metal species and competitive Cu(II) ions follow the order Mn > Zn >> Fe. Obviously, Mn and Zn bound to humic-rich hydrocolloids are very strongly competed by Cu( II) ions, in contrast to Fe which is scarcely exchangeable. The exchange of aquatic metal species (e.g. Fe) by DTPA/EDTA exhibited relatively slow kinetics but rather high metal availabilities, in contrast to their Cu(II) exchange.
Resumo:
Thermogravimetry-derivative thermogravimetry and differential scanning calorimetry were used to study the thermal behaviour of furosemide, hydrochlorothiazide, spironolactone, and amiloride hydrochloride. The results revealed the extents of their thermal stability and also permitted interpretations concerning their thermal decompositions. © 1996 Akadémiai Kiadó.
Resumo:
Thermogravimetry, derivative thermogravimetry (TG, DTG) and differential scanning calorimetry (DSC), were used to study the thermal behaviour of mefenamic acid, ibuprofen, acetaminophen, sodium diclofenac, phenylbutazone, dipyrone and salicylamide. The results led to thermal stability data and also to the interpretation concerning the thermal decomposition. © 1996 Akadémial Kiadó.
Resumo:
Solid M-Ox compounds, where M represents Mg(II), Zn(II), Pb(II) and NbO(III), and Ox is 8-quinolinol, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) and infrared absorption spectra (IR) have been used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1997 Akadémiai Kiadó.
Resumo:
Results on thermal and optical characterization of new lanthanide containing fluoroindate glasses in the system InF3-BaF2-In(PO3)3 are presented. Good optical quality and very stable glasses presenting up to 5 mm in thickness could be prepared in this system. Thermal analysis, Raman scattering and Eu3+ luminescence were the techniques utilized. A novel method for In(PO3)3 synthesis is proposed and the dependence of physical properties and structural features on the polyphosphate content is stressed. © 1998 Elsevier Science S.A.
Resumo:
Solid-state compounds Ln-4Cl-BP, where Ln represents lighter trivalent lanthanides and 4Cl-BP is 4-chlorobenzylidenepyruvate, were prepared. Thermogravimetry, derivative thermogravimetry (TG and DTG), differential scanning calorimetry (DSC) and other methods of analysis were used to characterize and to study the thermal behaviour of these compounds.