960 resultados para thermal regimes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulations are used to study the interaction of low-energy Ar atoms with the Ni(001) surface, Angular scattering distributions, in and out of the plane of incidence, are investigated as a function of incident energy, angles of incidence, crystallographic orientation of the incident beam and surface temperature. The results show a clear transition to the structure scattering regime at around 2 eV. However, at lower energies, two sub-regimes are revealed by the simulations, Far energies up to 250 meV, scattering is mainly diffuse, and significant trapping on the surface is observed, At energies above this level, lobular patterns start to form and trapping decreases with the increase in energy, Generally, there is a weak temperature dependence, but variations in the angle of incidence and/or changes in the crystallographic direction, generate significant changes in the scattering patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic) gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant) species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays.Results: A total of 306 (6.6%) cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction) after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C), also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh). On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments.Conclusion: Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to understanding the adaptive evolution of complex trait variation. Furthermore, some clustering of genes within inverted chromosomal sections was detected. Disentangling the effects of inversions will be obviously required in any future approach if we want to identify the relevant candidate genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major goal of evolutionary thermal biology is to understand how variation in temperature shapes phenotypic evolution. Comparing thermal reaction norms among populations from different thermal environments allows us to gain insights into the evolutionary mechanisms underlying thermal adaptation. Here, we have examined thermal adaptation in six wild populations of the fruit fly (Drosophila melanogaster) from markedly different natural environments by analyzing thermal reaction norms for fecundity, thorax length, wing area, and ovariole number under ecologically realistic fluctuating temperature regimes in the laboratory. Contrary to expectation, we found only minor differences in the thermal optima for fecundity among populations. Differentiation among populations was mainly due to differences in absolute (and partly also relative) thermal fecundity performance. Despite significant variation among populations in the absolute values of morphological traits, we observed only minor differentiation in their reaction norms. Overall, the thermal reaction norms for all traits examined were remarkably similar among different populations. Our results therefore suggest that thermal adaptation in D. melanogaster predominantly involves evolutionary changes in absolute trait values rather than in aspects of thermal reaction norms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

:ofiedian lethal temperatures ( LT50' s ) were determined for rainbow trout, Salmo gairdnerii, acclimated for a minimum of 21 days at 5 c onstant temperatures between 4 and 20 0 C. and 2 diel temperature fluctuations ( sinewave curves of amplitudes ± 4 and ± 7 0 C. about a mean temperature of 12 0 C. ) . Twenty-four-, 48-, and 96-hour LT50 estimates were c alculated f ollowing standard flow-through aquatic bioassay techniques and probi t transformation of mortality data. The phenomenon of delayed thermal mortality was also investigated. Shifts in upper incipient lethal temperature occurred as a result of previous thermal conditioning. It was shown that increases in constant acclimation temperature result in proportional l inear increases in thermal tolerances. The increase i n estimated 96-hour LT50's was approximately 0.13 0 c. X 1 0 C:1 between 8 and 20 0 C. The effect of acclimation to both cyclic temperature regimes was an increase in LT50 to values between the mean and maximum constant equivalent daily temperatures of the cycles. Twenty-four-, 48-, and 96-hour LT50 estimates of both cycles corresponded approximately to the LT50 values of the 16 0 C. c onstant temperature equivalent . This increase i n thermal tolerance was further demonstrated by the delayed thermal mortality experiments . Cycle amplitudes appeared to i nfluence thermal resistance through alterations in initi al mortality since mortality patterns characteristic of base temperature acclimations re-appeared after approximately 68 hours exposure to test temperatures for the 12 + 4 0 C. group, whereas mortality patterns stabilized and remained constant for a period greater than 192 hours with the larger therma l cycle ( 12 + 7 0 C. ). NO s ignificant corre lations between s pecimen weight and time-to-death was apparent. Data are discussed in relation to the establishment of thermal criteria for important commercial and sport fishes , such as the salmonids , as is the question whether previously reported values on lethal temperature s may have been under estimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of high pressure (to 800 MPa) applied at different temperatures (20-70 degreesC) for 20 min on beef post-rigor longissimus dorsi texture were studied. Texture profile analysis showed that when heated at ambient pressure there was the expected increase in hardness with increasing temperature and when pressure was applied at room temperature there was again the expected increase in hardness with increasing pressure. Similar results to those found at ambient temperature were found when pressure was applied at 40 degreesC. However, at higher temperatures, 60 and 70 degreesC it was found that pressures of 200 MPa caused large and significant decreases in hardness. The results found for hardness were mirrored by those for gumminess and chewiness. To further understand the changes in texture observed, intact beef longissimus dorsi samples and extracted myofibrils were both subjected to differential scanning calorimetry after being subjected to the same pressure/temperature regimes. As expected collagen was reasonably inert to pressure and only at temperatures of 60-70 degreesC was it denatured/unfolded. However, myosin was relatively easily unfolded by both pressure and temperature and when pressure denatured a new and modified structure was formed of low thermal stability. Although this new structure had low thermal stability at ambient pressure it still formed in both the meat and myofibrils when pressure was applied at 60 degreesC. It seems unlikely that structurally induced changes can be a major cause of the significant loss of hardness observed when beef is treated at high temperature (60-70 degreesC) and 200 MPa and it is suggested that accelerated proteolysis under these conditions is the major cause. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist–specialist trade-offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade-offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life-history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature-mediated trade-off between juvenile survival and size at maturity, suggesting that trade-offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist–specialist dimension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the climate warms, heat waves (HW) are projected to be more intense and to last longer, with serious implications for public health. Urban residents face higher health risks because urban heat islands (UHIs) exacerbate HW conditions. One strategy to mitigate negative impacts of urban thermal stress is the installation of green roofs (GRs) given their evaporative cooling effect. However, the effectiveness of GRs and the mechanisms by which they have an effect at the scale of entire cities are still largely unknown. The Greater Beijing Region (GBR) is modeled for a HW scenario with the Weather Research and Forecasting (WRF) model coupled with a state-of-the-art urban canopy model (PUCM) to examine the effectiveness of GRs. The results suggest GR would decrease near-surface air temperature (ΔT2max = 2.5 K) and wind speed (ΔUV10max = 1.0 m s-1) but increase atmospheric humidity (ΔQ2max = 1.3 g kg-1). GRs are simulated to lessen the overall thermal stress as indicated by apparent temperature (ΔAT2max = 1.7 °C). The modifications by GRs scale almost linearly with the fraction of the surface they cover. Investigation of the surface-atmosphere interactions indicate that GRs with plentiful soil moisture dissipate more of the surface energy as latent heat flux and subsequently inhibit the development of the daytime planetary boundary layer (PBL). This causes the atmospheric heating through entrainment at the PBL top to be decreased. Additionally, urban GRs modify regional circulation regimes leading to decreased advective heating under HW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytophthora nicotianae was added to pasteurized soil at the rate of 500 laboratory-produced chlamydospores per gram of soil and exposed to temperatures ranging from 35 to 53°C for 20 days. The time required to reduce soil populations to residual levels (0.2 propagule per gram of soil or less) decreased with increasing temperatures. Addition of cabbage residue to the soil reduced the time required to inactivate chlamydo spores. Temperature regimes were established to simulate daily temperature changes observed in the field, with a high temperature of 47°C for 3 h/day, and were good estimators of the efficacy of soil solarization for the control of P. nicotianae in soil. Cabbage amendment reduced the time required to inactivate chlamydospores of P. nicotianae and its effect was more pronounced at lower temperature regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A temperatura e umidade do solo são variáveis cujo conhecimento é fundamental para determinar os balanços de energia e água na biosfera. Os regimes térmico e hídrico dos solos sob cada ecossistema apresentam variações consideráveis, de acordo com sua mineralogia, o clima local e a vegetação. Nesse contexto, as temperaturas e umidades do solo foram medidas sob três ecossistemas existentes na região leste da Amazônia, a saber: floresta nativa (FLONA Caxiuanã, 01° 42' 30" S e 51° 31' 45" W), pastagem nativa (Soure, 00° 43' 25" S e 48° 30' 29" W) e área agrícola (!garapé-Açu, 01° 07' 59" S e 47° 36' 55" W). Os dados de campo na floresta e na pastagem foram coletados entre dezembro de 2001 e fevereiro de 2005; enquanto que na área agrícola, o monitoramento foi limitado de agosto de 2003 a fevereiro de 2005. Estas observações das variáveis físicas do solo foram analisadas levando em consideração as variáveis meteorológicas medidas simultaneamente tais como o fluxo de radiação solar incidente e a precipitação pluviométrica, que interferem diretamente nas variáveis do solo em cada sitio escolhido para estudo. As temperaturas do solo foram monitoradas por meio de sondas térmicas em profundidades de 0,05; 0,20 e 0,50 m. Fluxímetros de calor mediram esta variável em níveis de profundidade em 0,05 e 0,20 m. A umidade volumétrica do solo na camada superior de 0,30 m foi medida por sensor de sonda dupla por Reflectometria no Domínio do Tempo (TDR) em cada sitio. Foram feitas analises considerando as respostas do solo durante o período seco e chuvoso local, nestes três ecossistemas representativos do leste da Amazônia. Estimativas de difusividade térmica aparente do solo foram feitas pelos métodos da amplitude e da fase usando os dados de propagação do pulso diário de calor nesses solos. Os resultados mostraram valores bem diferentes, porém,no primeiro método pareceu mais confiável e adequado para o modelamento numérico. Como esperado, considerando a sua pouca cobertura vegetal, as temperaturas dos solos nos níveis superficiais, apresentaram grandes variações na pastagem e na área agrícola. Inesperadamente, as temperaturas na profundidade de 0,5 m abaixo da floresta mostraram maiores variações de amplitude que as profundidades de 0,20 e 0,05 m. O modelamento numérico das variações temporais da temperatura, em função da profundidade, para cada solo foi feito através do método harmônico Os resultados mostraram que o primeiro harmônico representou mais de 90% da variação total observada do pulso diário da temperatura da pastagem e área agrícola em 0,2 e 0,05 m de profundidade. Performance similar do modelamento foi observada na floresta nos níveis de 0,05 e 0,20 m. A magnitude dos fluxos de calor abaixo da pastagem e área agrícola atingiram valores seis vezes maiores que aqueles observados sob a floresta. Os resultados mostraram que, para a camada do solo superior de 0,30 m, a umidade volumétrica do solo sob a floresta é maior que sob os outros ecossistemas estudados neste trabalho. Este resultado é devido aparentemente; à proteção da floresta contra a evaporação da superfície do solo. Uma análise do comportamento sazonal e diário das temperaturas e umidade solos em resposta à radiação solar e precipitação é apresentada. Estudos de caso da taxa de perda da umidade do solo depois de significativa recarga de água por eventos de precipitação, também foram analisados. Algumas estimativas diárias de diminuição de água e recarga durante a noite e madrugada por subida de água de camadas subjacentes para a camada de 0.30 m foram feitas. Este trabalho analisou a maior serie temporal dos dados de temperatura e umidade dos solos coletados com alta freqüência de amostragem disponível até o momento, para o leste da Amazônia. Foi possível caracterizar as diferenças dos regimes destas variáveis físicas, abaixo de três ecossistemas importantes desta região. Estudos futuros dos minerais e materiais orgânicos nestes solos, bem como dos índices de área foliar e da biomassa das coberturas vegetais desses ecossistemas, melhoraria a compreensão dos regimes descritos neste trabalho.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Ultra High Performance Concrete research involves observing early-age creep and shrinkage under a compressive load throughout multiple thermal curing regimes. The goal was to mimic the conditions that would be expected of a precast/prestressing plant in the United States, where UHPC beams would be produced quickly to maximize a manufacturing plant’s output. The practice of steam curing green concrete to accelerate compressive strengths for early release of the prestressing tendons was utilized (140°F [60°C], 95% RH, 14 hrs), in addition to the full thermal treatment (195°F [90°C], 95% RH, 48 hrs) while the specimens were under compressive loading. Past experimental studies on creep and shrinkage characteristics of UHPC have only looked at applying a creep load after the thermal treatment had been administered to the specimens, or on ambient cured specimens. However, this research looked at mimicking current U.S. precast/prestressed plant procedures, and thus characterized the creep and shrinkage characteristics of UHPC as it is thermally treated under a compressive load. Michigan Tech has three moveable creep frames to accommodate two loading criteria per frame of 0.2f’ci and 0.6f’ci. Specimens were loaded in the creep frames and moved into a custom built curing chamber at different times, mimicking a precast plant producing several beams throughout the week and applying a thermal cure to all of the beams over the weekend. This thesis presents the effects of creep strain due to the varying curing regimes. An ambient cure regime was used as a baseline for the comparison against the varying thermal curing regimes. In all cases of thermally cured specimens, the compressive creep and shrinkage strains are accelerated to a maximum strain value, and remain consistent after the administration of the thermal cure. An average creep coefficient for specimens subjected to a thermal cure was found to be 1.12 and 0.78 for the high and low load levels, respectively. Precast/pressed plants can expect that simultaneously thermally curing UHPC elements that are produced throughout the week does not impact the post-cure creep coefficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The push for improved fuel economy and reduced emissions has led to great achievements in engine performance and control. These achievements have increased the efficiency and power density of gasoline engines dramatically in the last two decades. With the added power density, thermal management of the engine has become increasingly important. Therefore it is critical to have accurate temperature and heat transfer models as well as data to validate them. With the recent adoption of the 2025 Corporate Average Fuel Economy(CAFE) standard, there has been a push to improve the thermal efficiency of internal combustion engines even further. Lean and dilute combustion regimes along with waste heat recovery systems are being explored as options for improving efficiency. In order to understand how these technologies will impact engine performance and each other, this research sought to analyze the engine from both a 1st law energy balance perspective, as well as from a 2nd law exergy analysis. This research also provided insights into the effects of various parameters on in-cylinder temperatures and heat transfer as well as provides data for validation of other models. It was found that the engine load was the dominant factor for the energy distribution, with higher loads resulting in lower coolant heat transfer and higher brake work and exhaust energy. From an exergy perspective, the exhaust system provided the best waste heat recovery potential due to its significantly higher temperatures compared to the cooling circuit. EGR and lean combustion both resulted in lower combustion chamber and exhaust temperatures; however, in most cases the increased flow rates resulted in a net increase in the energy in the exhaust. The exhaust exergy, on the other hand, was either increased or decreased depending on the location in the exhaust system and the other operating conditions. The effects of dilution from lean operation and EGR were compared using a dilution ratio, and the results showed that lean operation resulted in a larger increase in efficiency than the same amount of dilution with EGR. Finally, a method for identifying fuel spray impingement from piston surface temperature measurements was found. Note: The material contained in this section is planned for submission as part of a journal article and/or conference paper in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct and analyze thermal spinning giant gravitons in type II/M-theory based on spherically wrapped black branes, using the method of thermal probe branes originating from the blackfold approach. These solutions generalize in different directions recent work in which the case of thermal (non-spinning) D3-brane giant gravitons was considered, and reveal a rich phase structure with various new properties. First of all, we extend the construction to M-theory, by constructing thermal giant graviton solutions using spherically wrapped M2- and M5-branes. More importantly, we switch on new quantum numbers, namely internal spins on the sphere, which are not present in the usual extremal limit for which the brane world volume stress tensor is Lorentz invariant. We examine the effect of this new type of excitation and in particular analyze the physical quantities in various regimes, including that of small temperatures as well as low/high spin. As a byproduct we find new stationary dipole-charged black hole solutions in AdS m × S n backgrounds of type II/M-theory. We finally show, via a double scaling extremal limit, that our spinning thermal giant graviton solutions lead to a novel null-wave zero-temperature giant graviton solution with a BPS spectrum, which does not have an analogue in terms of the conventional weakly coupled world volume theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid-fueled burners are used in a number of propulsion devices ranging from internal combustion engines to gas turbines. The structure of spray flames is quite complex and involves a wide range of time and spatial scales in both premixed and non-premixed modes (Williams 1965; Luo et al. 2011). A number of spray-combustion regimes can be observed experimentally in canonical scenarios of practical relevance such as counterflow diffusion flames (Li 1997), as sketched in figure 1, and for which different microscalemodelling strategies are needed. In this study, source terms for the conservation equations are calculated for heating, vaporizing and burning sprays in the single-droplet combustion regime. The present analysis provides extended formulation for source terms, which include non-unity Lewis numbers and variable thermal conductivities.