977 resultados para terrestrial Polychaeta
Resumo:
Within last few years a new type of instruments called Terrestrial Laser Scanners (TLS) entered to the commercial market. These devices brought a possibility to obtain completely new type of spatial, three dimensional data describing the object of interest. TLS instruments are generating a type of data that needs a special treatment. Appearance of this technique made possible to monitor deformations of very large objects, like investigated here landslides, with new quality level. This change is visible especially with relation to the size and number of the details that can be observed with this new method. Taking into account this context presented here work is oriented on recognition and characterization of raw data received from the TLS instruments as well as processing phases, tools and techniques to do them. Main objective are definition and recognition of the problems related with usage of the TLS data, characterization of the quality single point generated by TLS, description and investigation of the TLS processing approach for landslides deformation measurements allowing to obtain 3D deformation characteristic and finally validation of the obtained results. The above objectives are based on the bibliography studies and research work followed by several experiments that will prove the conclusions.
Resumo:
Depuis plus de 10 ans les modèles numériques d'altitude (MNA) produits par technologie de « light detection and ranging » (« LIDAR ») ont fourni de nouveaux outils très utiles pour des études géomorphologiques, particulièrement dans le cas des glissements de terrain. Le balayage laser terrestre (« TLS ») permet une utilisation très souple. Le TLS peut être employé pour la surveillance ou dans des situations d'urgence qui nécessitent une acquisition rapide d'un MNA afin d'évaluer l'aléa. Au travers de trois exemples, nous démontrons l'utilité du TLS pour la quantification de volumes de glissements de terrain, la création de profils et l'analyse de séries temporelles. Ces études de cas sont des glissements de terrain situés dans les argiles sensibles de l'est du Canada (Québec, Canada) ou de petits glissements rotationnels dans les berges d'une rivière (Suisse).
Resumo:
We identified hotspots of terrestrial vertebrate species diversity in Europe and adjacent islands. Moreover, we assessed the extent to which by the end of the 21(st) century such hotspots will be exposed to average monthly temperature and precipitation patterns which can be regarded as extreme if compared to the climate experienced during 1950-2000. In particular, we considered the entire European sub-continent plus Turkey and a total of 1149 species of terrestrial vertebrates. For each species, we developed species-specific expert-based distribution models (validated against field data) which we used to calculate species richness maps for mammals, breeding birds, amphibians, and reptiles. Considering four global circulation model outputs and three emission scenarios, we generated an index of risk of exposure to extreme climates, and we used a bivariate local Moran's I to identify the areas with a significant association between hotspots of diversity and high risk of exposure to extreme climates. Our results outline that the Mediterranean basin represents both an important hotspot for biodiversity and especially for threatened species for all taxa. In particular, the Iberian and Italian peninsulas host particularly high species richness as measured over all groups, while the eastern Mediterranean basin is particularly rich in amphibians and reptiles; the islands (both Macaronesian and Mediterranean) host the highest richness of threatened species for all taxa occurs. Our results suggest that the main hotspots of biodiversity for terrestrial vertebrates may be extensively influenced by the climate change projected to occur over the coming decades, especially in the Mediterranean bioregion, posing serious concerns for biodiversity conservation.
Resumo:
Au cours des 240 dernières années, 53 mouvements de versant se sont produits le long du promontoire de Québec, causant la mort de 88 personnes principalement lors de chutes de blocs. En octobre 2004, un petit éboulement a atteint la route dans une zone proche de l'éboulement de 1889 qui a tué 35 personnes et blessé 30 autres. Une image 3D a été créée par l'utilisation d'un scanner Lidar terrestre (SLT). Les sept familles de joints identifiées sont en accord avec les mesures effectuées dans de précédentes études. L'imagerie SLT a aussi permit d'estimer les volumes des instabilités passées et d'en analyser le mécanisme : un glissement rocheux qui affecte des blocs débités en parallélépipèdes par d'autres familles de joints. De plus la zone étudiée montre qu'elle est favorable aux chutes de blocs.
Resumo:
The assumption that climatic niche requirements of invasive species are conserved between their native and invaded ranges is key to predicting the risk of invasion. However, this assumption has been challenged recently by evidence of niche shifts in some species. Here, we report the first large-scale test of niche conservatism for 50 terrestrial plant invaders between Eurasia, North America, and Australia. We show that when analog climates are compared between regions, fewer than 15% of species have more than 10% of their invaded distribution outside their native climatic niche. These findings reveal that substantial niche shifts are rare in terrestrial plant invaders, providing support for an appropriate use of ecological niche models for the prediction of both biological invasions and responses to climate change.
Resumo:
The preferred food items of the slugs Laevicaulis alte and the snails Achatina fulica were used to prepare 'poison baits'by injecting the pesticides 'Rogor'and 'Nuvan'to kill these mollusc pests. The 'poison baits'prepared with Thrichosanthes dioica and Lycopersicum esculentum were accepted by 100% individuals of both the species irrespective of the pesticides used. In all cases the slug and the snail individuals died within a considerable length of time following consuption of the bait. The importance of using 'poison bait'lies not only with the sure success in killing the pests but also with the 'safe use'of toxic materials in order to avoid environmental hazards.
Resumo:
On December 4th 2007, a 3-Mm3 landslide occurred along the northwestern shore of Chehalis Lake. The initiation zone is located at the intersection of the main valley slope and the northern sidewall of a prominent gully. The slope failure caused a displacement wave that ran up to 38 m on the opposite shore of the lake. The landslide is temporally associated with a rain-on-snow meteorological event which is thought to have triggered it. This paper describes the Chehalis Lake landslide and presents a comparison of discontinuity orientation datasets obtained using three techniques: field measurements, terrestrial photogrammetric 3D models and an airborne LiDAR digital elevation model to describe the orientation and characteristics of the five discontinuity sets present. The discontinuity orientation data are used to perform kinematic, surface wedge limit equilibrium and three-dimensional distinct element analyses. The kinematic and surface wedge analyses suggest that the location of the slope failure (intersection of the valley slope and a gully wall) has facilitated the development of the unstable rock mass which initiated as a planar sliding failure. Results from the three-dimensional distinct element analyses suggest that the presence, orientation and high persistence of a discontinuity set dipping obliquely to the slope were critical to the development of the landslide and led to a failure mechanism dominated by planar sliding. The three-dimensional distinct element modelling also suggests that the presence of a steeply dipping discontinuity set striking perpendicular to the slope and associated with a fault exerted a significant control on the volume and extent of the failed rock mass but not on the overall stability of the slope.
Resumo:
The study of feces of terrestrial mammals brings out biological and ecological data such as the species presence, diet, behaviour, territory, parasitic fauna, and home-range use, which can be applied for conservation projects and support paleoecological research that use coprolites as the main source of study. Although the new biotechnological techniques allow more accurate data, the diagnosis based on morphometric analyses permits the primary identification of the taxonomic group origin to support the best choice of subsequent analyses. We present the compilation list of fecal shape and measurements available in the literature published in North America, Eastern and Southern Africa, Europe, and new data from Brazil. Shape and diameters are the best characteristics for taxonomic identification. Feces were assembled in 9 groups that reflect the Order, sometimes the Family, and even their common origin.
Resumo:
Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world.
Resumo:
Terrestrial laser scanning (TLS) provides high-resolution point clouds of the topography and new TLS instruments with ranges exceeding 300 m or even 1000 m are powerful tools for characterizing and monitoring slope movements. This study focuses on the 35 million m3 Åknes rockslide in Western Norway, which is one of the most investigated and monitored rockslides in the world. The TLS point clouds are used for the structural analysis of the steep, inaccessible main scarp of the rockslide, including an assessment of the discontinuity sets and fold axes. TLS acquisitions in 2006, 2007 and 2008 provide information on 3-D displacements for the entire scanned area and are not restricted like conventional survey instruments to single measurement points. The affine transformation matrix between two TLS acquisitions precisely describes the rockslide displacements and enables their separation into translational components, such as the displacement velocity and direction, and rotational components, like toppling. This study shows the ability of TLS to obtain reliable 3-D displacement information over a large, unstable area. Finally, a possible instability model for the upper part of Åknes rockslide explains the measured translational and rotational displacements by a combination of southward planar sliding along the gneiss foliation, gravitational vertical settlement along the complex, stepped basal sliding surface and northward toppling toward the opened graben structure.
Resumo:
The role of ecology in the evolution and maintenance of arthropod sociality has received increasing research attention in recent years. In some organisms, such as halictine bees, polistine wasps, and social spiders, researchers are investigating the environmental factors that may contribute to high levels of variation in the degree of sociality exhibited both among and within species. Within lineages that include only eusocial members, such as ants and termites, studies focus more on identifying extrinsic factors that may contribute to the dramatic variation in colony size, number of queens, and division of labour that is evident across these species. In this review, I propose a comparative approach that seeks to identify environmental factors that may have a common influence across such divergent social arthropod groups. I suggest that seeking common biogeographic patterns in the distribution of social systems or key social traits may help us to identify ecological factors that play a common role in shaping the evolution of sociality across different organisms. I first review previous studies of social gradients that form along latitudinal and altitudinal axes. Within families and within species, many organisms show an increasing degree of sociality at lower latitudes and altitudes. In a smaller number of cases, organisms form larger groups or found nests cooperatively at higher latitudes and altitudes. I then describe several environmental factors that vary consistently along such gradients, including climate variables and abundance of predators, and outline their proposed role in the social systems of terrestrial arthropods. Finally, I map distributions of a social trait against several climatic factors in five case studies to demonstrate how future comparative studies could inform empirical research.