998 resultados para temporal bone


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Für Patienten an der Hämodialyse ist nach Versagen der klassischen arterio-venösen Fisteln oder Shunts ein direkter Gefässzugang mittels Katheter lebensnotwendig. Permanente zentralvenöse Katheter penetrieren die Hals- und Thoraxweichteile und die Haut ohne rigide Befestigung. Die Infektionsrate ist hoch und führt oft zur Explantation. Knochenverankerte Hörgeräte sind zur Behandlung bei Schalleitungsschwerhörigkeit etabliert. Das Implantat sitzt fest im Felsenbein und der Aufsatz penetriert die Haut. Schwere Infektionen, die eine Explantation nötig machen, sind sehr selten. Wir nehmen an, dass einer der Hauptgründe für die tiefe Komplikationsrate die starke Befestigung des Implantats am Knochen ist, wodurch die Hautbewegungen relativ zum Knochen minimiert werden. Basierend auf den Erfahrungen mit implantierten Hörsystemen haben wir einen perkutanen knochenverankerten Hämodialysezugang im Bereich des Felsenbeins als vorteilhafte Alternative zum herkömmlichen zentralvenösen Katheterzugang entwickelt. Dabei wurde die Felsenbeinanatomie und Knochendicke zur Lokalisierung des idealen Implantationsortes untersucht; die Schraubenstabilität im Knochen getestet; ein Titanimplantat inklusive Ventile und Katheter, sowie chirurgische Instrumente zur sicheren Implantation entwickelt. Der knochenverankerte Hämodialysezugang wurde auf Flussrate, Dichtigkeit und Reinigung getestet; die Platzierung des Katheters mittels Seldingertechnik in die V. jugularis interna über eine Halsinzision festgelegt. Die Resultate unserer Arbeit zeigen die technische Machbarkeit eines im Felsenbein verankerten neuartigen Hämodialysezuganges und bilden die Grundlage einer inzwischen bewilligten klinischen Pilotstudie.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamic responses of the hearing organ to acoustic overstimulation were investigated using the guinea pig isolated temporal bone preparation. The organ was loaded with the fluorescent Ca2+ indicator Fluo-3, and the cochlear electric responses to low-level tones were recorded through a microelectrode in the scala media. After overstimulation, the amplitude of the cochlear potentials decreased significantly. In some cases, rapid recovery was seen with the potentials returning to their initial amplitude. In 12 of 14 cases in which overstimulation gave a decrease in the cochlear responses, significant elevations of the cytoplasmic [Ca2+] in the outer hair cells were seen. [Ca2+] increases appeared immediately after terminating the overstimulation, with partial recovery taking place in the ensuing 30 min in some preparations. Such [Ca2+] changes were not seen in preparations that were stimulated at levels that did not cause an amplitude change in the cochlear potentials. The overstimulation also gave rise to a contraction, evident as a decrease of the width of the organ of Corti. The average contraction in 10 preparations was 9 μm (SE 2 μm). Partial or complete recovery was seen within 30–45 min after the overstimulation. The [Ca2+] changes and the contraction are likely to produce major functional alterations and consequently are suggested to be a factor contributing strongly to the loss of function seen after exposure to loud sounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much of the hearing loss that occurs in old age is likely to be due to the long-term deterioration of the mitochondria in the different structures of the cochlea. The current review surveys some of the basic information on mitochondria and mitochondrial DNA, as a background to their possible involvement in presbyacusis. It is likely that oxygen radicals damage mitochondrial DNA and other components of the mitochondria, such as their proteins and lipids. This further compromises both oxidative phosphorylation and the repair processes in mitochondria, setting up a vicious cycle of degradation. Evidence is presented from inherited point mutations on the possibly most critical sites for mutations in mitochondrial DNA associated with hearing loss. It is suggested that random sorting and clonal expansion of mutations both maintain the integrity of the pool of mitochondrial DNA molecules and give rise to the apoptosis that leads to loss of vulnerable cells, and hence to deafness. It is moreover suggested that apoptosis of the vulnerable cells of the inner ear may to some extent be preventable, or at least delayed. Copyright (C) 2004 S. Karger AG, Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Secondary fracture healing in long bones leads to the successive formation of intricate patterns of tissues in the newly formed callus. The main aim of this work was to quantitatively describe the topology of these tissue patterns at different stages of the healing process and to generate averaged images of tissue distribution. This averaging procedure was based on stained histological sections (2, 3, 6, and 9 weeks post-operatively) of 64 sheep with a 3 mm tibial mid-shaft osteotomy, stabilized either with a rigid or a semi-rigid external fixator. Before averaging, histological images were sorted for topology according to six identified tissue patterns. The averaged images were obtained for both fixation types and the lateral and medial side separately. For each case, the result of the averaging procedure was a collection of six images characterizing quantitatively the progression of the healing process. In addition, quantified descriptions of the newly formed cartilage and the bone area fractions (BA/TA) of the bony callus are presented. For all cases, a linear increase in the BA/TA of the bony callus was observed. The slope was greatest in the case of the most rigid stabilization and lowest in the case of the least stiff. This topological description of the progression of bone healing will allow quantitative validation (or falsification) of current mechano-biological theories.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

After bone fracture, various cellular activities lead to the formation of different tissue types, which form the basis for the process of secondary bone healing. Although these tissues have been quantified by histology, their material properties are not well understood. Thus, the aim of this study is to correlate the spatial and temporal variations in the mineral content and the nanoindentation modulus of the callus formed via intramembranous ossification over the course of bone healing. Midshaft tibial samples from a sheep osteotomy model at time points of 2, 3, 6 and 9 weeks were employed. PMMA embedded blocks were used for quantitative back scattered electron imaging and nanoindentation of the newly formed periosteal callus near the cortex. The resulting indentation modulus maps show the heterogeneity in the modulus in the selected regions of the callus. The indentation modulus of the embedded callus is about 6 GPa at the early stage. At later stages of mineralization, the average indentation modulus reaches 14 GPa. There is a slight decrease in average indentation modulus in regions distant to the cortex, probably due to remodelling of the peripheral callus. The spatial and temporal distribution of mineral content in the callus tissue also illustrates the ongoing remodelling process observed from histological analysis. Most interestingly the average indentation modulus, even at 9 weeks, remains as low as 13 GPa, which is roughly 60% of that for cortical sheep bone. The decreased indentation modulus in the callus compared to cortex is due to the lower average mineral content and may be perhaps also due to the properties of the organic matrix which might be different from normal bone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The conventional method of attachment of prosthesis involves on a socket. A new method relying on osseointegrated fixation is emerging. It has significant prosthetic benefits. Only a few studies demonstrated the biomechanical benefits. The specific objective of this study was to present the key temporal and spatial gait characteristics for unilateral amputation. The ultimate aim of this study was to characterise the functional outcome of the individual with transfemoral lower limb amputation fitted with osseointegrated fixation, which can be assess through temporal and spatial gait characteristics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Few studies has been done using guided bone regeneration in maxillary sinus defects. AIM: To assess the bone repair process in surgical defects on the alveolar wall of the monkey maxillary sinus, which communicates with the sinus cavity, by using collagen membranes: Gen-derm - Genius Baumer, Pro-tape - Proline and autologous temporal fascia. MATERIALS AND METHODS: In this prospective and experimental study, orosinusal communications were performed in four tufted capuchin monkeys (Cebus apella) and histologic analysis was carried out 180 days after. RESULTS: In the defects without a cover (control), bone proliferation predominated in two animals and fibrous connective tissue predominated in the other two. In defects repaired with a temporal fascia flap, fibrous connective tissue predominated in three animals and bone proliferation predominated in one. In the defects repaired with Gen-derm or Pro-tape collagen membranes there was complete bone proliferation in three animals and fibrous connective tissue in one. CONCLUSIONS: Surgical defect can be repaired with both bone tissue and fibrous connective tissue in all study groups; collagen membranes was more beneficial in the bone repair process than temporal fascia or absence of a barrier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: The aim of this study was to investigate the temporal modifications in bone mass, bone biomechanical properties and bone morphology in spinal cord injured rats 2, 4 and 6 weeks after a transection. Material and methods: Control animals were randomly distributed into four groups (n = 10 each group): control group (CG) - control animals sacrificed immediately after surgery; spinal cord-injured 2 weeks (2W) - spinal cord-injured animals sacrificed 2 weeks after surgery; spinal cord-injured 4 weeks (4W) - spinal cord-injured animals sacrificed 4 weeks after surgery; spinal cord-injured 6 weeks (6W) - spinal cord-injured animals sacrificed 6 weeks after surgery. Results: Biomechanical properties of the right tibia were determined by a threepoint bending test and injured animals showed a statistically significant decrease in maximal load compared to control animals. The right femur was used for densitometric analysis and bone mineral content of the animals sacrificed 4 and 6 weeks after surgery was significantly higher compared to the control animals and animals sacrificed 2 weeks after surgery. Histopathological and morphological analysis of tibiae revealed intense resorptive areas in the group 2 weeks after injury only. Conclusions: The results of this study show that this rat model is a valuable tool to investigate bone remodeling processes specifically associated with SCI. Taken together, our results suggest that spinal cord injury induced bone loss within 2 weeks after injury in rats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: It is well recognized that colorectal cancer does not frequently metastasize to bone. The aim of this retrospective study was to establish whether colorectal cancer ever bypasses other organs and metastasizes directly to bone and whether the presence of lung lesions is superior to liver as a better predictor of the likelihood and timing of bone metastasis. METHODS: We performed a retrospective analysis on patients with a clinical diagnosis of colon cancer referred for staging using whole-body 18F-FDG PET and CT or PET/CT. We combined PET and CT reports from 252 individuals with information concerning patient history, other imaging modalities, and treatments to analyze disease progression. RESULTS: No patient had isolated osseous metastasis at the time of diagnosis, and none developed isolated bone metastasis without other organ involvement during our survey period. It took significantly longer for colorectal cancer patients to develop metastasis to the lungs (23.3 months) or to bone (21.2 months) than to the liver (9.8 months). Conclusion: Metastasis only to bone without other organ involvement in colorectal cancer patients is extremely rare, perhaps more rare than we previously thought. Our findings suggest that resistant metastasis to the lungs predicts potential disease progression to bone in the colorectal cancer population better than liver metastasis does.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this project was to investigate the in vitro osteogenic potential of human mesenchymal progenitor cells in novel matrix architectures built by means of a three-dimensional bioresorbable synthetic framework in combination with a hydrogel. Human mesenchymal progenitor cells (hMPCs) were isolated from a human bone marrow aspirate by gradient centrifugation. Before in vitro engineering of scaffold-hMPC constructs, the adipogenic and osteogenic differentiation potential was demonstrated by staining of neutral lipids and induction of bone-specific proteins, respectively. After expansion in monolayer cultures, the cells were enzymatically detached and then seeded in combination with a hydrogel into polycaprolactone (PCL) and polycaprolactone-hydroxyapatite (PCL-HA) frameworks. This scaffold design concept is characterized by novel matrix architecture, good mechanical properties, and slow degradation kinetics of the framework and a biomimetic milieu for cell delivery and proliferation. To induce osteogenic differentiation, the specimens were cultured in an osteogenic cell culture medium and were maintained in vitro for 6 weeks. Cellular distribution and viability within three-dimensional hMPC bone grafts were documented by scanning electron microscopy, cell metabolism assays, and confocal laser microscopy. Secretion of the osteogenic marker molecules type I procollagen and osteocalcin was analyzed by semiquantitative immunocytochemistry assays. Alkaline phosphatase activity was visualized by p-nitrophenyl phosphate substrate reaction. During osteogenic stimulation, hMPCs proliferated toward and onto the PCL and PCL-HA scaffold surfaces and metabolic activity increased, reaching a plateau by day 15. The temporal pattern of bone-related marker molecules produced by in vitro tissue-engineered scaffold-cell constructs revealed that hMPCs differentiated better within the biomimetic matrix architecture along the osteogenic lineage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this sheep study, we investigated the influence of fixation stability on the temporal and spatial distribution of tissues in the fracture callus. As the initial mechanical conditions have been cited as being especially important for the healing outcome, it was hypothesized that differences in the path of healing would be seen as early as the initial phase of healing. ----- ----- Sixty-four sheep underwent a mid-shaft tibial osteotomy that was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture calluses were analyzed using radiological, biomechanical and histological techniques. Statistical comparison between the groups was performed using the Mann–Whitney U test for unpaired non-parametric data. ----- ----- In the callus of the tibia treated with semi-rigid fixation, remnants of the fracture haematoma remained present for longer, although new periosteal bone formation during early healing was similar in both groups. The mechanical competence of the healing callus at 6 weeks was inferior compared to tibiae treated with rigid fixation. Semi-rigid fixation resulted in a larger cartilage component of the callus, which persisted longer. Remodeling processes were initiated earlier in the rigid group, while new bone formation continued throughout the entire investigated period in the semi-rigid group. ----- ----- In this study, evidence is provided that less rigid fixation increased the time required for healing. The process of intramembranous ossification appeared during the initial stages of healing to be independent of mechanical stability. However, the delay in healing was related to a prolonged chondral phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoclasts are specialised bone-resorbing cells. This particular ability makes osteoclasts irreplaceable for the continual physiological process of bone remodelling as well as for the repair process during bone healing. Whereas the effects of systemic diseases on osteoclasts have been described by many authors, the spatial and temporal distribution of osteoclasts during bone healing seems to be unclear so far. In the present study, healing of a tibial osteotomy under standardised external fixation was examined after 2, 3, 6 and 9 weeks (n = 8) in sheep. The osteoclastic number was counted, the area of mineralised bone tissue was measured histomorphometrically and density of osteoclasts per square millimetre mineralised tissue was calculated. The osteoclastic density in the endosteal region increased, whereas the density in the periosteal region remained relatively constant. The density of osteoclasts within the cortical bone increased slightly over the first 6 weeks, however, there was a more rapid increase between the sixth and ninth weeks. The findings of this study imply that remodelling and resorption take place already in the very early phase of bone healing. The most frequent remodelling process can be found in the periosteal callus, emphasising its role as the main stabiliser. The endosteal space undergoes resorption in order to recanalise the medullary cavity, a process also started in the very early phase of healing at a low level and increasing significantly during healing. The cortical bone adapts in its outward appearance to the surrounding callus structure. This paradoxic loosening is caused by the continually increasing number and density of osteoclasts in the cortical bone ends. This study clearly emphasises the osteoclastic role especially during early bone healing. These cells do not simply resorb bone but participate in a fine adjusted system with the bone-producing osteoblasts in order to maintain and improve the structural strength of bone tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports that treatment of osseous defects with different growth factors initiates distinct rates of repair. We developed a new method for monitoring the progression of repair, based upon measuring the in vivo mechanical properties of healing bone. Two different members of the bone morphogenetic protein (BMP) family were chosen to initiate defect healing: BMP-2 to induce osteogenesis, and growth-and-differentiation factor (GDF)-5 to induce chondrogenesis. To evaluate bone healing, BMPs were implanted into stabilised 5 mm bone defects in rat femurs and compared to controls. During the first two weeks, in vivo biomechanical measurements showed similar values regardless of the treatment used. However, 2 weeks after surgery, the rhBMP-2 group had a substantial increase in stiffness, which was supported by the imaging modalities. Although the rhGDF-5 group showed comparable mechanical properties at 6 weeks as the rhBMP-2 group, the temporal development of regenerating tissues appeared different with rhGDF-5, resulting in a smaller callus and delayed tissue mineralisation. Moreover, histology showed the presence of cartilage in the rhGDF-5 group whereas the rhBMP-2 group had no cartilaginous tissue. Therefore, this study shows that rhBMP-2 and rhGDF-5 treated defects, under the same conditions, use distinct rates of bone healing as shown by the tissue mechanical properties. Furthermore, results showed that in vivo biomechanical method is capable of detecting differences in healing rate by means of change in callus stiffness due to tissue mineralisation.