941 resultados para temporal activity
Resumo:
Current knowledge about the relationship between transport disadvantage and activity space size is limited to urban areas, and as a result, very little is known to date about this link in a rural context. In addition, although research has identified transport disadvantaged groups based on their size of activity spaces, these studies have, however, not empirically explained such differences and the result is often a poor identification of the problems facing disadvantaged groups. Research has shown that transport disadvantage varies over time. The static nature of analysis using the activity space concept in previous research studies has lacked the ability to identify transport disadvantage in time. Activity space is a dynamic concept; and therefore possesses a great potential in capturing temporal variations in behaviour and access opportunities. This research derives measures of the size and fullness of activity spaces for 157 individuals for weekdays, weekends, and for a week using weekly activity-travel diary data from three case study areas located in rural Northern Ireland. Four focus groups were also conducted in order to triangulate the quantitative findings and to explain the differences between different socio-spatial groups. The findings of this research show that despite having a smaller sized activity space, individuals were not disadvantaged because they were able to access their required activities locally. Car-ownership was found to be an important life line in rural areas. Temporal disaggregation of the data reveals that this is true only on weekends due to a lack of public transport services. In addition, despite activity spaces being at a similar size, the fullness of activity spaces of low-income individuals was found to be significantly lower compared to their high-income counterparts. Focus group data shows that financial constraint, poor connections both between public transport services and between transport routes and opportunities forced individuals to participate in activities located along the main transport corridors.
Resumo:
The construction of timelines of computer activity is a part of many digital investigations. These timelines of events are composed of traces of historical activity drawn from system logs and potentially from evidence of events found in the computer file system. A potential problem with the use of such information is that some of it may be inconsistent and contradictory thus compromising its value. This work introduces a software tool (CAT Detect) for the detection of inconsistency within timelines of computer activity. We examine the impact of deliberate tampering through experiments conducted with our prototype software tool. Based on the results of these experiments, we discuss techniques which can be employed to deal with such temporal inconsistencies.
Resumo:
Probabilistic topic models have recently been used for activity analysis in video processing, due to their strong capacity to model both local activities and interactions in crowded scenes. In those applications, a video sequence is divided into a collection of uniform non-overlaping video clips, and the high dimensional continuous inputs are quantized into a bag of discrete visual words. The hard division of video clips, and hard assignment of visual words leads to problems when an activity is split over multiple clips, or the most appropriate visual word for quantization is unclear. In this paper, we propose a novel algorithm, which makes use of a soft histogram technique to compensate for the loss of information in the quantization process; and a soft cut technique in the temporal domain to overcome problems caused by separating an activity into two video clips. In the detection process, we also apply a soft decision strategy to detect unusual events.We show that the proposed soft decision approach outperforms its hard decision counterpart in both local and global activity modelling.
Resumo:
Current knowledge about the relationship between transport disadvantage and activity space size is limited to urban areas, and as a result, very little is known about this link in a rural context. In addition, although research has identified transport disadvantaged groups based on their size of activity space, these studies have, however, not empirically explained such differences and the result is often a poor identification of the problems facing disadvantaged groups. Research has shown that transport disadvantage varies over time. The static nature of analysis using the activity space concept in previous research studies has lacked the ability to identify transport disadvantage in time. Activity space is a dynamic concept; and therefore possesses a great potential in capturing temporal variations in behaviour and access opportunities. This research derives measures of the size and fullness of activity spaces for 157 individuals for weekdays, weekends, and for a week using weekly activity-travel diary data from three case study areas located in rural Northern Ireland. Four focus groups were also conducted in order to triangulate quantitative findings and to explain the differences between different socio-spatial groups. The findings of this research show that despite having a smaller sized activity space, individuals were not disadvantaged because they were able to access their required activities locally. Car-ownership was found to be an important life line in rural areas. Temporal disaggregation of the data reveals that this is true only on weekends due to a lack of public transport services. In addition, despite activity spaces being at a similar size, the fullness of activity spaces of low-income individuals was found to be significantly lower compared to their high-income counterparts. Focus group data shows that financial constraint, poor connections both between public transport services and between transport routes and opportunities forced individuals to participate in activities located along the main transport corridors.
Resumo:
Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenes using a “bag of particle trajectories”. Particle trajectories are extracted from foreground regions within short video clips using particle video, which estimates long range motion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.
Resumo:
Purpose: Photoreceptor interactions reduce the temporal bandwidth of the visual system under mesopic illumination. The dynamics of these interactions are not clear. This study investigated cone-cone and rod-cone interactions when the rod (R) and three cone (L, M, S) photoreceptor classes contribute to vision via shared post-receptoral pathways. Methods: A four-primary photostimulator independently controlled photoreceptor activity in human observers. To determine the temporal dynamics of receptoral (L, S, R) and post-receptoral (LMS, LMSR, +L-M) pathways (5 Td, 7° eccentricity) in Experiment 1, ON-pathway sensitivity was assayed with an incremental probe (25ms) presented relative to onset of an incremental sawtooth conditioning pulse (1000ms). To define the post-receptoral pathways mediating the rod stimulus, Experiment 2 matched the color appearance of increased rod activation (30% contrast, 25-1000ms; constant cone excitation) with cone stimuli (variable L+M, L/L+M, S/L+M; constant rod excitation). Results: Cone-cone interactions with luminance stimuli (LMS, LMSR, L-cone) reduced Weber contrast sensitivity by 13% and the time course of adaptation was 23.7±1ms (μ±SE). With chromatic stimuli (+L-M, S), cone pathway sensitivity was also reduced and recovery was slower (+L-M 8%, 2.9±0.1ms; S 38%, 1.5±0.3ms). Threshold patterns at ON-conditioning pulse onset were monophasic for luminance and biphasic for chromatic stimuli. Rod-rod interactions increased sensitivity(19%) with a recovery time of 0.7±0.2ms. Compared to cone-cone interactions, rod-cone interactions with luminance stimuli reduced sensitivity to a lesser degree (5%) with faster recovery (42.9±0.7ms). Rod-cone interactions were absent with chromatic stimuli. Experiment 2 showed that rod activation generated luminance (L+M) signals at all durations, and chromatic signals (L/L+M, S/L+M) for durations >75ms. Conclusions: Temporal dynamics of cone-cone interactions are consistent with contrast sensitivity loss in the MC pathway for luminance stimuli and chromatically opponent responses in the PC and KC pathway with chromatic stimuli. Rod-cone interactions limit contrast sensitivity loss during dynamic illumination changes and increase the speed of mesopic light adaptation. The change in relative weighting of the temporal rod signal within the major post-receptoral pathways modifies the sensitivity and dynamics of photoreceptor interactions.
Resumo:
Purpose: IpRGCs mediate non-image forming functions including photoentrainment and the pupil light reflex (PLR). Temporal summation increases visual sensitivity and decreases temporal resolution for image forming vision, but the summation properties of nonimage forming vision are unknown. We investigated the temporal summation of inner (ipRGC) and outer (rod/cone) retinal inputs to the PLR. Method: The consensual PLR of the left eye was measured in six participants with normal vision using a Maxwellian view infrared pupillometer. Temporal summation was investigated using a double-pulse protocol (100 ms stimulus pairs; 0–1024 ms inter-stimulus interval, ISI) presented to the dilated fellow right eye (Tropicamide 1%). Stimulus lights (blue λmax = 460 nm; red λmax = 638 nm) biased activity to inneror outer retinal inputs to non-image forming vision. Temporal summation was measured suprathreshold (15.2 log photons.cm−2.s−1 at the cornea) and subthreshold (11.4 log photons.cm−2.s−1 at the cornea). Results: RM-ANOVAs showed the suprathreshold and subthreshold 6 second post illumination pupil response (PIPR: expressed as percentage baseline diameter) did not significantly vary for red or blue stimuli (p > .05). The PIPR for a subthreshold red 16 ms double-pulse control condition did not significantly differ with ISI (p > .05). The maximum constriction amplitude for red and blue 100 ms double- pulse stimuli did not significantly vary with ISI (p > .05). Conclusion: The non-significant changes in suprathreshold PIPR and subthreshold maximum pupil constriction indicate that inner retinal ipRGC inputs and outer retinal photoreceptor inputs to the PLR do not show temporal summation. The results suggest a fundamental difference between the temporal summation characteristics of image forming and non-image forming vision.
Resumo:
Efficient and effective feature detection and representation is an important consideration when processing videos, and a large number of applications such as motion analysis, 3D scene understanding, tracking etc. depend on this. Amongst several feature description methods, local features are becoming increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational complexity, their performance is still too limited for real world applications. Furthermore, rapid increases in the uptake of mobile devices has increased the demand for algorithms that can run with reduced memory and computational requirements. In this paper we propose a semi binary based feature detectordescriptor based on the BRISK detector, which can detect and represent videos with significantly reduced computational requirements, while achieving comparable performance to the state of the art spatio-temporal feature descriptors. First, the BRISK feature detector is applied on a frame by frame basis to detect interest points, then the detected key points are compared against consecutive frames for significant motion. Key points with significant motion are encoded with the BRISK descriptor in the spatial domain and Motion Boundary Histogram in the temporal domain. This descriptor is not only lightweight but also has lower memory requirements because of the binary nature of the BRISK descriptor, allowing the possibility of applications using hand held devices.We evaluate the combination of detectordescriptor performance in the context of action classification with a standard, popular bag-of-features with SVM framework. Experiments are carried out on two popular datasets with varying complexity and we demonstrate comparable performance with other descriptors with reduced computational complexity.
Resumo:
Heparan sulfate proteoglycans (HSPGs) are complex and labile macromolecular moieties on the surfaces of cells that control the activities of a range of extracellular proteins, particularly those driving growth and regeneration. Here, we examine the biosynthesis of heparan sulfate (HS) sugars produced by cultured MC3T3-E1 mouse calvarial pre-osteoblast cells in order to explore the idea that changes in HS activity in turn drive phenotypic development during osteogenesis. Cells grown for 5 days under proliferating conditions were compared to cells grown for 20 days under mineralizing conditions with respect to their phenotype, the forms of HS core protein produced, and their HS sulfotransferase biosynthetic enzyme levels. RQ-PCR data was supported by the results from the purification of day 5 and day 20 HS forms by anionic exchange chromatography. The data show that cells in active growth phases produce more complex forms of sugar than cells that have become relatively quiescent during active mineralization, and that these in turn can differentially influence rates of cell growth when added exogenously back to preosteoblasts.
Resumo:
This study investigated the effects of workload, control, and general self-efficacy on affective task reactions (i.e., demands-ability fit, active coping, and anxiety) during a work simulation. The main goals were: (1) to determine the extent general self-efficacy moderates the effects of demand and control on affective task reactions, and; (2) to determine if this varies as a function of changes in workload. Participants (N=141) completed an inbox activity under conditions of low or high control and within low and high workload conditions. The order of trials varied so that workload increased or decreased. Results revealed individuals with high general self-efficacy reported better demands-abilities fit and active coping as well as less anxiety. Three interactive effects were found. First, it was found that high control increased demands-abilities fit from trial 1 to trial 2, but only when workload decreased. Second, it was found that low efficacious individuals active coping increased in trial 2, but only under high control. Third, it was found that high control helped high efficacious individuals manage anxiety when workload decreased. However, for individuals with low general self-efficacy, neither high nor low control alleviated anxiety (i.e., whether workload increased or decreased over time).
Resumo:
Accurate and detailed measurement of an individual's physical activity is a key requirement for helping researchers understand the relationship between physical activity and health. Accelerometers have become the method of choice for measuring physical activity due to their small size, low cost, convenience and their ability to provide objective information about physical activity. However, interpreting accelerometer data once it has been collected can be challenging. In this work, we applied machine learning algorithms to the task of physical activity recognition from triaxial accelerometer data. We employed a simple but effective approach of dividing the accelerometer data into short non-overlapping windows, converting each window into a feature vector, and treating each feature vector as an i.i.d training instance for a supervised learning algorithm. In addition, we improved on this simple approach with a multi-scale ensemble method that did not need to commit to a single window size and was able to leverage the fact that physical activities produced time series with repetitive patterns and discriminative features for physical activity occurred at different temporal scales.
Resumo:
Background: The two most reported mosquito-borne diseases in Queensland, a northern state of Australia, are Ross River virus (RRV) disease and Barmah Forest virus (BFV) disease. Both diseases are endemic in Queensland and have similar clinical symptoms and comparable transmission cycles involving a complex inter-relationship between human hosts, various mosquito vectors, and a range of nonhuman vertebrate hosts, including marsupial mammals that are unique to the Australasian region. Although these viruses are thought to share similar vectors and vertebrate hosts, RRV is four times more prevalent than BFV in Queensland. Methods: We performed a retrospective analysis of BFV and RRV human disease notification data collected from 1995 to 2007 in Queensland to ascertain whether there were differences in the incidence patterns of RRV and BFV disease. In particular, we compared the temporal incidence and spatial distribution of both diseases and considered the relationship between their disease dynamics. We also investigated whether a peak in BFV incidence during spring was indicative of the following RRV and BFV transmission season incidence levels. Results: Although there were large differences in the notification rates of the two diseases, they had similar annual temporal patterns, but there were regional variations between the length and magnitude of the transmission seasons. During periods of increased disease activity, however, there was no association between the dynamics of the two diseases. Conclusions: The results from this study suggest that while RRV and BFV share similar mosquito vectors, there are significant differences in the ecology of these viruses that result in different epidemic patterns of disease incidence. Further investigation is required into the ecology of each virus to determine which factors are important in promoting RRV and BFV disease outbreaks.
Resumo:
Background: Seizures and interictal spikes in mesial temporal lobe epilepsy (MTLE) affect a network of brain regions rather than a single epileptic focus. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have demonstrated a functional network in which hemodynamic changes are time-locked to spikes. However, whether this reflects the propagation of neuronal activity from a focus, or conversely the activation of a network linked to spike generation remains unknown. The functional connectivity (FC) changes prior to spikes may provide information about the connectivity changes that lead to the generation of spikes. We used EEG-fMRI to investigate FC changes immediately prior to the appearance of interictal spikes on EEG in patients with MTLE. Methods/principal findings: Fifteen patients with MTLE underwent continuous EEG-fMRI during rest. Spikes were identified on EEG and three 10 s epochs were defined relative to spike onset: spike (0–10 s), pre-spike (−10 to 0 s), and rest (−20 to −10 s, with no previous spikes in the preceding 45s). Significant spike-related activation in the hippocampus ipsilateral to the seizure focus was found compared to the pre-spike and rest epochs. The peak voxel within the hippocampus ipsilateral to the seizure focus was used as a seed region for FC analysis in the three conditions. A significant change in FC patterns was observed before the appearance of electrographic spikes. Specifically, there was significant loss of coherence between both hippocampi during the pre-spike period compared to spike and rest states. Conclusion/significance: In keeping with previous findings of abnormal inter-hemispheric hippocampal connectivity in MTLE, our findings specifically link reduced connectivity to the period immediately before spikes. This brief decoupling is consistent with a deficit in mutual (inter-hemispheric) hippocampal inhibition that may predispose to spike generation.
Resumo:
Two ultrasound survey methods were used to determine the presence and activity patterns of New Zealand long-tailed bats (Chalinolobus tuberculatus) in the city of Hamilton. First, 13 monthly surveys conducted at 18 green spaces found C. tuberculatus in only one urban forest reserve, Hammond Bush, where they were found consistently throughout the year. Bat activity was strongly related to temperature. Second, twice-yearly citywide surveys conducted over 2 years determined the distribution and habitat associations of C. tuberculatus. Bats were found only in the southern part of the city and were strongly associated with the Waikato River. Bat activity was negatively correlated with housing and street light density and positively correlated with topographical complexity. In Hamilton, topographical complexity indicates the presence of gullies. Gullies probably provide foraging and roosting opportunities and connect the river to distant forest patches. These results suggest that urban habitats can be useful for bats if gullies can link these to distant habitat fragments.
Resumo:
Local spatio-temporal features with a Bag-of-visual words model is a popular approach used in human action recognition. Bag-of-features methods suffer from several challenges such as extracting appropriate appearance and motion features from videos, converting extracted features appropriate for classification and designing a suitable classification framework. In this paper we address the problem of efficiently representing the extracted features for classification to improve the overall performance. We introduce two generative supervised topic models, maximum entropy discrimination LDA (MedLDA) and class- specific simplex LDA (css-LDA), to encode the raw features suitable for discriminative SVM based classification. Unsupervised LDA models disconnect topic discovery from the classification task, hence yield poor results compared to the baseline Bag-of-words framework. On the other hand supervised LDA techniques learn the topic structure by considering the class labels and improve the recognition accuracy significantly. MedLDA maximizes likelihood and within class margins using max-margin techniques and yields a sparse highly discriminative topic structure; while in css-LDA separate class specific topics are learned instead of common set of topics across the entire dataset. In our representation first topics are learned and then each video is represented as a topic proportion vector, i.e. it can be comparable to a histogram of topics. Finally SVM classification is done on the learned topic proportion vector. We demonstrate the efficiency of the above two representation techniques through the experiments carried out in two popular datasets. Experimental results demonstrate significantly improved performance compared to the baseline Bag-of-features framework which uses kmeans to construct histogram of words from the feature vectors.