905 resultados para task model
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
A nature inspired decentralised multi-agent algorithm is proposed to solve a problem of distributed task allocation in which cities produce and store batches of different mail types. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. The problem is constrained so that agents are penalised for switching mail types. When an agent process a mail batch of different type to the previous one, it must undergo a change-over, with repeated change-overs rendering the agent inactive. The efficiency (average amount of mail retrieved), and the flexibility (ability of the agents to react to changes in the environment) are investigated both in static and dynamic environments and with respect to sudden changes. New rules for mail selection and specialisation are proposed and are shown to exhibit improved efficiency and flexibility compared to existing ones. We employ a evolutionary algorithm which allows the various rules to evolve and compete. Apart from obtaining optimised parameters for the various rules for any environment, we also observe extinction and speciation.
Resumo:
A nature inspired decentralised multi-agent algorithm is proposed to solve a problem of distributed task selection in which cities produce and store batches of different mail types. Agents must collect and process the mail batches, without a priori knowledge of the available mail at the cities or inter-agent communication. In order to process a different mail type than the previous one, agents must undergo a change-over during which it remains inactive. We propose a threshold based algorithm in order to maximise the overall efficiency (the average amount of mail collected). We show that memory, i.e. the possibility for agents to develop preferences for certain cities, not only leads to emergent cooperation between agents, but also to a significant increase in efficiency (above the theoretical upper limit for any memoryless algorithm), and we systematically investigate the influence of the various model parameters. Finally, we demonstrate the flexibility of the algorithm to changes in circumstances, and its excellent scalability.
Resumo:
In recent years there have been a number of high-profile plant closures in the UK. In several cases, the policy response has included setting up a task force to deal with the impacts of the closure. It can be hypothesised that task force involving multi-level working across territorial boundaries and tiers of government is crucial to devising a policy response tailored to people's needs and to ensuring success in dealing with the immediate impacts of a closure. This suggests that leadership, and vision, partnership working and community engagement, and delivery of high quality services are important. This paper looks at the case of the MG Rover closure in 2005, to examine the extent to which the policy response to the closure at the national, regional and local levels dealt effectively with the immediate impacts of the closure, and the lessons that can be learned from the experience. Such lessons are of particular relevance given the closure of the LDV van plant in Birmingham in 2009 and more broadly – such as in the case of the downsizing of the Opel operation in Europe following its takeover by Magna.
Resumo:
Theoretical models of social learning predict that individuals can benefit from using strategies that specify when and whom to copy. Here the interaction of two social learning strategies, model age-based biased copying and copy when uncertain, was investigated. Uncertainty was created via a systematic manipulation of demonstration efficacy (completeness) and efficiency (causal relevance of some actions). The participants, 4- to 6-year-old children (N = 140), viewed both an adult model and a child model, each of whom used a different tool on a novel task. They did so in a complete condition, a near-complete condition, a partial demonstration condition, or a no-demonstration condition. Half of the demonstrations in each condition incorporated causally irrelevant actions by the models. Social transmission was assessed by first responses but also through children’s continued fidelity, the hallmark of social traditions. Results revealed a bias to copy the child model both on first response and in continued interactions. Demonstration efficacy and efficiency did not affect choice of model at first response but did influence solution exploration across trials, with demonstrations containing causally irrelevant actions decreasing exploration of alternative methods. These results imply that uncertain environments can result in canalized social learning from specific classes of mode
Resumo:
With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.
Resumo:
The selection criteria for contractor pre-qualification are characterized by the co-existence of both quantitative and qualitative data. The qualitative data is non-linear, uncertain and imprecise. An ideal decision support system for contractor pre-qualification should have the ability of handling both quantitative and qualitative data, and of mapping the complicated nonlinear relationship of the selection criteria, such that rational and consistent decisions can be made. In this research paper, an artificial neural network model was developed to assist public clients identifying suitable contractors for tendering. The pre-qualification criteria (variables) were identified for the model. One hundred and twelve real pre-qualification cases were collected from civil engineering projects in Hong Kong, and eighty-eight hypothetical pre-qualification cases were also generated according to the “If-then” rules used by professionals in the pre-qualification process. The results of the analysis totally comply with current practice (public developers in Hong Kong). Each pre-qualification case consisted of input ratings for candidate contractors’ attributes and their corresponding pre-qualification decisions. The training of the neural network model was accomplished by using the developed program, in which a conjugate gradient descent algorithm was incorporated for improving the learning performance of the network. Cross-validation was applied to estimate the generalization errors based on the “re-sampling” of training pairs. The case studies show that the artificial neural network model is suitable for mapping the complicated nonlinear relationship between contractors’ attributes and their corresponding pre-qualification (disqualification) decisions. The artificial neural network model can be concluded as an ideal alternative for performing the contractor pre-qualification task.
Resumo:
Vigilance declines when exposed to highly predictable and uneventful tasks. Monotonous tasks provide little cognitive and motor stimulation and contribute to human errors. This paper aims to model and detect vigilance decline in real time through participant’s reaction times during a monotonous task. A lab-based experiment adapting the Sustained Attention to Response Task (SART) is conducted to quantify the effect of monotony on overall performance. Then relevant parameters are used to build a model detecting hypovigilance throughout the experiment. The accuracy of different mathematical models are compared to detect in real-time – minute by minute - the lapses in vigilance during the task. We show that monotonous tasks can lead to an average decline in performance of 45%. Furthermore, vigilance modelling enables to detect vigilance decline through reaction times with an accuracy of 72% and a 29% false alarm rate. Bayesian models are identified as a better model to detect lapses in vigilance as compared to Neural Networks and Generalised Linear Mixed Models. This modelling could be used as a framework to detect vigilance decline of any human performing monotonous tasks.
Resumo:
The driving task requires sustained attention during prolonged periods, and can be performed in highly predictable or repetitive environments. Such conditions could create hypovigilance and impair performance towards critical events. Identifying such impairment in monotonous conditions has been a major subject of research, but no research to date has attempted to predict it in real-time. This pilot study aims to show that performance decrements due to monotonous tasks can be predicted through mathematical modelling taking into account sensation seeking levels. A short vigilance task sensitive to short periods of lapses of vigilance called Sustained Attention to Response Task is used to assess participants‟ performance. The framework for prediction developed on this task could be extended to a monotonous driving task. A Hidden Markov Model (HMM) is proposed to predict participants‟ lapses in alertness. Driver‟s vigilance evolution is modelled as a hidden state and is correlated to a surrogate measure: the participant‟s reactions time. This experiment shows that the monotony of the task can lead to an important decline in performance in less than five minutes. This impairment can be predicted four minutes in advance with an 86% accuracy using HMMs. This experiment showed that mathematical models such as HMM can efficiently predict hypovigilance through surrogate measures. The presented model could result in the development of an in-vehicle device that detects driver hypovigilance in advance and warn the driver accordingly, thus offering the potential to enhance road safety and prevent road crashes.
Resumo:
Effective use of information and communication technologies (ICT) is necessary for delivering efficiency and improved project delivery in the construction industry. Convincing clients or contracting organisations to embrace ICT is a difficult task, there are few templates of an ICT business model for the industry to use. ICT application in the construction industry is relatively low compared to automotive and aerospace industries. The National Museum of Australia project provides a unique opportunity for investigating and reporting on this deficiency in publicly available knowledge. Concentrates on the business model content and objectives, briefly indicates the evaluation framework that was used to evaluate ICT effectiveness.
Resumo:
We present a hierarchical model for assessing an object-oriented program's security. Security is quantified using structural properties of the program code to identify the ways in which `classified' data values may be transferred between objects. The model begins with a set of low-level security metrics based on traditional design characteristics of object-oriented classes, such as data encapsulation, cohesion and coupling. These metrics are then used to characterise higher-level properties concerning the overall readability and writability of classified data throughout the program. In turn, these metrics are then mapped to well-known security design principles such as `assigning the least privilege' and `reducing the size of the attack surface'. Finally, the entire program's security is summarised as a single security index value. These metrics allow different versions of the same program, or different programs intended to perform the same task, to be compared for their relative security at a number of different abstraction levels. The model is validated via an experiment involving five open source Java programs, using a static analysis tool we have developed to automatically extract the security metrics from compiled Java bytecode.
Resumo:
In this paper we extend the concept of speaker annotation within a single-recording, or speaker diarization, to a collection wide approach we call speaker attribution. Accordingly, speaker attribution is the task of clustering expectantly homogenous intersession clusters obtained using diarization according to common cross-recording identities. The result of attribution is a collection of spoken audio across multiple recordings attributed to speaker identities. In this paper, an attribution system is proposed using mean-only MAP adaptation of a combined-gender UBM to model clusters from a perfect diarization system, as well as a JFA-based system with session variability compensation. The normalized cross-likelihood ratio is calculated for each pair of clusters to construct an attribution matrix and the complete linkage algorithm is employed to conduct clustering of the inter-session clusters. A matched cluster purity and coverage of 87.1% was obtained on the NIST 2008 SRE corpus.
Resumo:
Project management in the construction industry involves coordination of many tasks and individuals, affected by complexity and uncertainty, which increases the need for efficient cooperation. Procurement is crucial since it sets the basis for cooperation between clients and contractors. This is true whether the project is local, regional or global in scope. Traditionally, procurement procedures are competitive, resulting in conflicts, adversarial relationships and less desirable project results. The purpose of this paper is to propose and empirically test an alternative procurement model based on cooperative procurement procedures that facilitates cooperation between clients and contractors in construction projects. The model is based on four multi-item constructs – incentive-based compensation, limited bidding options, partner selection and cooperation. Based on a sample of 87 client organisations, the model was empirically tested and exhibited strong support, including content, nomological, convergent and discriminant validity, as well as reliability. Our findings indicate that partner selection based on task related attributes mediates the relationship between two important pre-selection processes (incentive-based compensation and limited bid invitation) and preferred outcome of cooperation. The contribution of the paper is identifying valid and reliable measurement constructs and confirming a unique sequential order for achieving cooperation. Moreover, the findings are applicable for many types of construction projects because of the similarities in the construction industry worldwide.
Resumo:
Objective The current study evaluated part of the Multifactorial Model of Driving Safety to elucidate the relative importance of cognitive function and a limited range of standard measures of visual function in relation to the Capacity to Drive Safely. Capacity to Drive Safely was operationalized using three validated screening measures for older drivers. These included an adaptation of the well validated Useful Field of View (UFOV) and two newer measures, namely a Hazard Perception Test (HPT), and a Hazard Change Detection Task (HCDT). Method Community dwelling drivers (n = 297) aged 65–96 were assessed using a battery of measures of cognitive and visual function. Results Factor analysis of these predictor variables yielded factors including Executive/Speed, Vision (measured by visual acuity and contrast sensitivity), Spatial, Visual Closure, and Working Memory. Cognitive and Vision factors explained 83–95% of age-related variance in the Capacity to Drive Safely. Spatial and Working Memory were associated with UFOV, HPT and HCDT, Executive/Speed was associated with UFOV and HCDT and Vision was associated with HPT. Conclusion The Capacity to Drive Safely declines with chronological age, and this decline is associated with age-related declines in several higher order cognitive abilities involving manipulation and storage of visuospatial information under speeded conditions. There are also age-independent effects of cognitive function and vision that determine driving safety.