965 resultados para synthetic aperture imaging ladar (SAIL)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Radarsat-1 Antarctic Mapping Project (RAMP) compiled a mosaic of Antarctica and the adjacent ocean zone from more than 3000 high-resolution Synthetic Aperture Radar (SAR) images acquired in September and October 1997. The mosaic with a pixel size of 100 m was used to determine iceberg size distributions around Antarctica, combining an automated detection with a visual control of all icebergs larger than 5 km**2 and correction of recognized false detections. For icebergs below 5 km**2 in size, the numbers of false detections and accuracies of size retrievals were analyzed for three test sites. Nearly 7000 icebergs with horizontal areas between 0.3 and 4717.7 km**2 were identified in a near-coastal zone of varying width between 20 and 300 km. The spatial distributions of icebergs around Antarctica were calculated for zonal segments of 20° angular width and related to the types of the calving fronts in the respective section. Results reveal that regional variations of the size distributions cannot be neglected. The highest ice mass accumulations were found at positions of giant icebergs (> 18.5 km) but also in front of ice shelves from which larger numbers of smaller icebergs calve almost continuously. Although the coastal oceanic zone covered by RAMP is too narrow compared to the spatial coverage needed for oceanographic research, this study nevertheless demonstrates the usefulness of SAR images for iceberg research and the need for repeated data acquisitions extending ocean-wards over distances of 500 km and more from the coast to monitor iceberg melt and disintegration and the related freshwater input into the ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic Aperture Radar (SAR) images a target region reflectivity function in the multi-dimensional spatial domain of range and cross-range. SAR synthesizes a large aperture radar in order to achieve a finer azimuth resolution than the one provided by any on-board real antenna. Conventional SAR techniques assume a single reflection of transmitted waveforms from targets. Nevertheless, today¿s new scenes force SAR systems to work in urban environments. Consequently, multiple-bounce returns are added to directscatter echoes. We refer to these as ghost images, since they obscure true target image and lead to poor resolution. By analyzing the quadratic phase error (QPE), this paper demonstrates that Earth¿s curvature influences the defocusing degree of multipath returns. In addition to the QPE, other parameters such as integrated sidelobe ratio (ISLR), peak sidelobe ratio (PSLR), contrast (C) and entropy (E) provide us with the tools to identify direct-scatter echoes in images containing undesired returns coming from multipath.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foliage Penetration (FOPEN) radar systems were introduced in 1960, and have been constantly improved by several organizations since that time. The use of Synthetic Aperture Radar (SAR) approaches for this application has important advantages, due to the need for high resolution in two dimensions. The design of this type of systems, however, includes some complications that are not present in standard SAR systems. FOPEN SAR systems need to operate with a low central frequency (VHF or UHF bands) in order to be able to penetrate the foliage. High bandwidth is also required to obtain high resolution. Due to the low central frequency, large integration angles are required during SAR image formation, and therefore the Range Migration Algorithm (RMA) is used. This project thesis identifies the three main complications that arise due to these requirements. First, a high fractional bandwidth makes narrowband propagation models no longer valid. Second, the VHF and UHF bands are used by many communications systems. The transmitted signal spectrum needs to be notched to avoid interfering them. Third, those communications systems cause Radio Frequency Interference (RFI) on the received signal. The thesis carries out a thorough analysis of the three problems, their degrading effects and possible solutions to compensate them. The UWB model is applied to the SAR signal, and the degradation induced by it is derived. The result is tested through simulation of both a single pulse stretch processor and the complete RMA image formation. Both methods show that the degradation is negligible, and therefore the UWB propagation effect does not need compensation. A technique is derived to design a notched transmitted signal. Then, its effect on the SAR image formation is evaluated analytically. It is shown that the stretch processor introduces a processing gain that reduces the degrading effects of the notches. The remaining degrading effect after processing gain is assessed through simulation, and an experimental graph of degradation as a function of percentage of nulled frequencies is obtained. The RFI is characterized and its effect on the SAR processor is derived. Once again, a processing gain is found to be introduced by the receiver. As the RFI power can be much higher than that of the desired signal, an algorithm is proposed to remove the RFI from the received signal before RMA processing. This algorithm is a modification of the Chirp Least Squares Algorithm (CLSA) explained in [4], which adapts it to deramped signals. The algorithm is derived analytically and then its performance is evaluated through simulation, showing that it is effective in removing the RFI and reducing the degradation caused by both RFI and notching. Finally, conclusions are drawn as to the importance of each one of the problems in SAR system design.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have simulated the performance of various apertures used in Coded Aperture Imaging - optically. Coded pictures of extended and continuous-tone planar objects from the Annulus, Twin Annulus, Fresnel Zone Plate and the Uniformly Redundant Array have been decoded using a noncoherent correlation process. We have compared the tomographic capabilities of the Twin Annulus with the Uniformly Redundant Arrays based on quadratic residues and m-sequences. We discuss the ways of reducing the 'd. c.' background of the various apertures used. The non-ideal System-Point-Spread-Function inherent in a noncoherent optical correlation process produces artifacts in the reconstruction. Artifacts are also introduced as a result of unwanted cross-correlation terms from out-of-focus planes. We find that the URN based on m-sequences exhibits good spatial resolution and out-of-focus behaviour when imaging extended objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferometric synthetic aperture radar (InSAR) techniques can successfully detect phase variations related to the water level changes in wetlands and produce spatially detailed high-resolution maps of water level changes. Despite the vast details, the usefulness of the wetland InSAR observations is rather limited, because hydrologists and water resources managers need information on absolute water level values and not on relative water level changes. We present an InSAR technique called Small Temporal Baseline Subset (STBAS) for monitoring absolute water level time series using radar interferograms acquired successively over wetlands. The method uses stage (water level) observation for calibrating the relative InSAR observations and tying them to the stage's vertical datum. We tested the STBAS technique with two-year long Radarsat-1 data acquired during 2006–2008 over the Water Conservation Area 1 (WCA1) in the Everglades wetlands, south Florida (USA). The InSAR-derived water level data were calibrated using 13 stage stations located in the study area to generate 28 successive high spatial resolution maps (50 m pixel resolution) of absolute water levels. We evaluate the quality of the STBAS technique using a root mean square error (RMSE) criterion of the difference between InSAR observations and stage measurements. The average RMSE is 6.6 cm, which provides an uncertainty estimation of the STBAS technique to monitor absolute water levels. About half of the uncertainties are attributed to the accuracy of the InSAR technique to detect relative water levels. The other half reflects uncertainties derived from tying the relative levels to the stage stations' datum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to survey and assess the state-of-the-art in automatic target recognition for synthetic aperture radar imagery (SAR-ATR). The aim is not to develop an exhaustive survey of the voluminous literature, but rather to capture in one place the various approaches for implementing the SAR-ATR system. This paper is meant to be as self-contained as possible, and it approaches the SAR-ATR problem from a holistic end-to-end perspective. A brief overview for the breadth of the SAR-ATR challenges is conducted. This is couched in terms of a single-channel SAR, and it is extendable to multi-channel SAR systems. Stages pertinent to the basic SAR-ATR system structure are defined, and the motivations of the requirements and constraints on the system constituents are addressed. For each stage in the SAR-ATR processing chain, a taxonomization methodology for surveying the numerous methods published in the open literature is proposed. Carefully selected works from the literature are presented under the taxa proposed. Novel comparisons, discussions, and comments are pinpointed throughout this paper. A two-fold benchmarking scheme for evaluating existing SAR-ATR systems and motivating new system designs is proposed. The scheme is applied to the works surveyed in this paper. Finally, a discussion is presented in which various interrelated issues, such as standard operating conditions, extended operating conditions, and target-model design, are addressed. This paper is a contribution toward fulfilling an objective of end-to-end SAR-ATR system design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

提出了一种用于合成孔径激光成像雷达的双向环路结构的发射接收望远镜,双向环路包括发射4-f转像系统、接收4-f转像系统和独立的望远镜。发射通道中设置离焦和相位调制平板偏置,接收通道中设置离焦和相位平板偏置。控制发射离焦量,发射相位调制函数,接收离焦量,接收相位调制函数,用同一个望远镜可以同时实现空间二次项相位附加偏置的激光发射和消除目标点散射回波接收波面像差的离焦光学接收,并产生雷达运动方向上合适的和可控制的相位二次项历程,从而实现孔径合成成像。详细介绍了系统设计,给出了从发射到光电外差接收的全过程传输方程。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-space, defined as the altitude region between 20 and 100 km, offers many capabilities that are not accessible for low Earth-orbit (LEO) satellites or airplanes because it is above storm and not constrained by orbital mechanics and high fuel consumption. Hence, a high flying speed can be obtained for the maneuvering vehicles operating in near-space. This offers a promising solution to simultaneous high-resolution and wide-swath synthetic aperture radar (SAR) imaging. As such, one near-space wide-swath SAR imaging technique is presented in this letter. The system configuration, signal model, and imaging scheme are described. An example near-space SAR system is designed, and its imaging performance is analyzed. Simulation results show that near-space maneuvering vehicle SAR indeed seems to be a promising solution to wide-swath SAR imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.