963 resultados para suspended concrete floors, floor vibration, vibration serviceability
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Whole-body vibration exposure of locomotive engineers and the vibration attenuation of seats in 22 U.S. locomotives (built between 1959 and 2000) was studied during normal revenue service and following international measurement guidelines. Triaxial vibration measurements (duration mean 155 min, range 84-383 min) on the seat and on the floor were compared. In addition to the basic vibration evaluation (aw rms), the vector sum (av), the maximum transient vibration value (MTVV/aw), the vibration dose value (VDV/(aw T1/4)), and the vibration seat effective transmissibility factor (SEAT) were calculated. The power spectral densities are also reported. The mean basic vibration level (aw rms) was for the fore-aft axis x = 0.18 m/sec2, the lateral axis y = 0.28 m/sec2, and the vertical axis z = 0.32 m/sec2. The mean vector sum was 0.59 m/sec2 (range 0.27 to 1.44). The crest factors were generally at or above 9 in the horizontal and vertical axis. The mean MTVV/aw was 5.3 (x), 5.1 (y), and 4.8 (z), and the VDV/(aw T1/4) values ranged from 1.32 to 2.3 (x-axis), 1.33 to 1.7 (y-axis), and 1.38 to 1.86 (z-axis), generally indicating high levels of shocks. The mean seat transmissibility factor (SEAT) was 1.4 (x) and 1.2 (y) and 1 (z), demonstrating a general ineffectiveness of any of the seat suspension systems. In conclusion, these data indicate that locomotive rides are characterized by relatively high shock content (acceleration peaks) of the vibration signal in all directions. Locomotive vertical and lateral vibrations are similar, which appears to be characteristic for rail vehicles compared with many road/off-road vehicles. Tested locomotive cab seats currently in use (new or old) appear inadequate to reduce potentially harmful vibration and shocks transmitted to the seated operator, and older seats particularly lack basic ergonomic features regarding adjustability and postural support.
Resumo:
Includes appendices.
Resumo:
"August 1987."
Resumo:
Mode of access: Internet.
Resumo:
The thesis has been carried out within the “SHAPE Project - Predicting Strength Changes in Bridges from Frequency Data Safety, Hazard, and Poly-harmonic Evaluation” (ERA-NET Plus Infravation Call 2014) which dealt with the structural assessment of existing bridges and laboratory structural reproductions through the use of vibration-based monitoring systems, for detecting changes in their natural frequencies and correlating them with the occurrence of damage. The main purpose of this PhD dissertation has been the detection of the variation of the main natural frequencies as a consequence of a previous-established damage configuration provided on a structure. Firstly, the effect of local damage on the modal feature has been discussed mainly concerning a steel frame and a composite steel-concrete bridge. Concerning the variation of the fundamental frequency of the small bridge, the increasing severity of two local damages has been investigated. Moreover, the comparison with a 3D FE model is even presented establishing a link between the dynamic properties and the damage features. Then, moving towards a diffused damage pattern, four concrete beams and a small concrete deck were loaded achieving the yielding of the steel reinforcement. The stiffness deterioration in terms of frequency shifts has been reconsidered by collecting a large set of dynamic experiments on simply supported R.C. beams discussed in the literature. The comparison of the load-frequency curves suggested a significant agreement among all the experiments. Thus, in the framework of damage mechanics, the “breathing cracks” phenomenon has been discussed leading to an analytical formula able to explain the frequency decay observed experimentally. Lastly, some dynamic investigations of two existing bridges and the corresponding FE Models are presented in Chapter 4. Moreover, concerning the bridge in Bologna, two prototypes of a network of accelerometers were installed and the data of a few months of monitoring have been discussed.
Resumo:
Temporomandibular joint (TMJ) sounds are important and common physical signs of temporomandibular disorders (TMD). The aim of this study was to evaluate the influence of the effect of the use of occlusal bite splints (stabilizing and repositioning) on the sounds produced in the TMJ, by means of the electrovibratography (EVG). Thirty-one patients with TMD from the Dental School of Ribeirão Preto, University of São Paulo, Brazil were selected for this study. Group 1 (n=23) wore stabilizing bite splints and Group 2 (n=8) used anterior repositioning splints. Before and after treatment with occlusal splints both groups were analyzed using the SonoPAK Q/S recording system (BioResearch System, Inc.). The treatments with stabilizing bite splints were satisfactory, since they reduced the total amount of the sound energies (p<0.05), but the use of anterior repositioning splints for no more than 4 weeks produced significantly better results (p<0.01). The total amount of vibration energy involved in the vibrating movements of the TMJ showed significant improvement using anterior repositioning splints.
Resumo:
In Brazil, the study of pedestrian-induced vibration on footbridges has been undertaken since the early 1990s, for concrete and steel footbridges. However, there are no recorded studies of this kind for timber footbridges. Brazilian code ABNT NBR 7190 (1997) gives design requirements only for static loads in the case of timber footbridges, without considering the serviceability limit state from pedestrian-induced vibrations. The aim of this work is to perform a theoretical dynamic, numerical and experimental analysis on simply-supported timber footbridges, by using a small-scale model developed from a 24 m span and 2 m width timber footbridge, with two main timber beams. Span and width were scaled down (1:4) to 6 m e 0.5 in, respectively. Among the conclusions reached herein, it is emphasized that the Euler-Bernoulli beam theory is suitable for calculating the vertical and lateral first natural frequencies in simply-supported timber footbridges; however, special attention should be given to the evaluation of lateral bending stiffness, as it leads to conservative values.
Resumo:
Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible structure. A common practice in linear structural dynamics is to consider a linear viscous damping model as the major energy dissipation mechanism. However, it is well known that different forms of energy dissipation can affect the structure's dynamic response. The major goal of this paper is to address the effects of the turbulent frictional damping force, also known as drag force on the dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a lumped-mass on the tip. First, the system's analytical equation is obtained and solved by employing a perturbation technique. The solution process considers variations of the drag force coefficient and its effects on the system's response. Then, experimental results are presented to demonstrate the effects of the nonlinear quadratic damping due to the turbulent frictional force on the system's dynamic response. In particular, the effects of the quadratic damping on the frequency-response and amplitude-response curves are investigated. Numerically simulated as well as experimental results indicate that variations on the drag force coefficient significantly alter the dynamics of the structure under investigation. Copyright (c) 2008 D. G. Silva and P. S. Varoto.
Resumo:
Background: High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons). This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random) applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability. Methods: Subjects (n = 6) were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses) and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise) applied to the triceps surae muscle group. In an additional investigation, M(max) and F-waves were elicited at different times before or after the vibratory stimulation. Results: The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves. Conclusions: These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC) due to the spinal recruitment of motoneurons. The association of vibration and electrical stimulation could be beneficial for many therapeutic interventions and vibration-based exercise programs. The command for the vibration-induced extra torques presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms.
Resumo:
The noise, vibration and harshness (NVH) performance of passenger vehicles strongly depends on the fluid-structure interaction between the air in the vehicle cavity and the sheet metal structure of the vehicle. Most of the noise and vibration problems related to this interaction come from resonance peaks of the sheet metal, which are excited by external forces (road, engine, and wind). A reduction in these resonance peaks can be achieved by applying bitumen damping layers, also called deadeners, in the sheet metal. The problem is where these deadeners shall be fixed, which is usually done in a trial-and-error basis. In this work, one proposes the use of embedded sensitivity to locate the deadeners in the sheet metal of the vehicle, more specifically in the vehicle roof. Experimental frequency response functions (FRFs) of the roof are obtained and the data are processed by adopting the embedded sensitivity method, thus obtaining the sensitivity of the resonance peaks on the local increase in damping due to the deadeners. As a result, by examining the sensitivity functions, one can find the optimum location of the deadeners that maximize their effect in reducing the resonance peaks of interest. After locating the deadeners in the optimum positions, it was possible to verify a strong reduction in resonance peaks of the vehicle roof, thus showing the efficiency of the procedure. The main advantage of this procedure is that it only requires FRF measurements of the vehicle in its original state not needing any previous modification of the vehicle structure to find the sensitivity functions. [DOI: 10.1115/1.4000769]
Resumo:
This work extends a previously presented refined sandwich beam finite element (FE) model to vibration analysis, including dynamic piezoelectric actuation and sensing. The mechanical model is a refinement of the classical sandwich theory (CST), for which the core is modelled with a third-order shear deformation theory (TSDT). The FE model is developed considering, through the beam length, electrically: constant voltage for piezoelectric layers and quadratic third-order variable of the electric potential in the core, while meclianically: linear axial displacement, quadratic bending rotation of the core and cubic transverse displacement of the sandwich beam. Despite the refinement of mechanical and electric behaviours of the piezoelectric core, the model leads to the same number of degrees of freedom as the previous CST one due to a two-step static condensation of the internal dof (bending rotation and core electric potential third-order variable). The results obtained with the proposed FE model are compared to available numerical, analytical and experimental ones. Results confirm that the TSDT and the induced cubic electric potential yield an extra stiffness to the sandwich beam. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Hybrid active-passive damping treatments combine the reliability, low cost and robustness of viscoelastic damping treatments and the high-performance, modal selective and adaptive piezoelectric active control. Numerous hybrid damping treatments have been reported in the literature. They differ mainly by the relative positions of viscoelastic treatments, sensors and piezoelectric actuators. In this work we present an experimental analysis of three active-passive damping design configurations applied to a cantilever beam. In particular, two design configurations based on the extension mode of piezoelectric actuators combined with viscoelastic constrained layer damping treatments and one design configuration with shear piezoelectric actuators embedded in a sandwich beam with viscoelastic core are analyzed. For comparison purposes, a purely active design configuration with an extension piezoelectric actuator bonded to an elastic beam is also analyzed. The active-passive damping performance of the four design configurations is compared. Results show that active-passive design configurations provide more reliable and wider-range damping performance than the purely active configuration.
Resumo:
This work presents a performance analysis of multimodal passive vibration control of a sandwich beam using shear piezoelectric materials, embedded in a sandwich beam core, connected to independent resistive shunt circuits. Shear piezoelectric actuators were recently shown to be more interesting for higher frequencies and stiffer structures. In particular, for shunted damping, it was shown that equivalent material loss factors of up to 31% can be achieved by optimizing the shunt circuit. In the present work, special attention is given to the design of multimodal vibration control through independent shunted shear piezoelectric sensors. In particular, a parametric analysis is performed to evaluate optimal configurations for a set of modes to be damped. Then, a methodology to evaluate the modal damping resulting from each shunted piezoelectric sensor is presented using the modal strain energy method. Results show that modal damping factors of 1%-2% can be obtained for three selected vibration modes.