943 resultados para supervised neighbor embedding
Resumo:
INTRODUCTION Genome-wide association studies of rheumatoid arthritis (RA) have identified an association of the disease with a 6q23 region devoid of genes. TNFAIP3, an RA candidate gene, flanks this region, and polymorphisms in both the TNFAIP3 gene and the intergenic region are associated with systemic lupus erythematosus. We hypothesized that there is a similar association with RA, including polymorphisms in TNFAIP3 and the intergenic region. METHODS To test this hypothesis, we selected tag-single nucleotide polymorphisms (SNPs) in both loci. They were analyzed in 1,651 patients with RA and 1,619 control individuals of Spanish ancestry. RESULTS Weak evidence of association was found both in the 6q23 intergenic region and in the TNFAIP3 locus. The rs582757 SNP and a common haplotype in the TNFAIP3 locus exhibited association with RA. In the intergenic region, two SNPs were associated, namely rs609438 and rs13207033. The latter was only associated in patients with anti-citrullinated peptide antibodies. Overall, statistical association was best explained by the interdependent contribution of SNPs from the two loci TNFAIP3 and the 6q23 intergenic region. CONCLUSIONS Our data are consistent with the hypothesis that several RA genetic factors exist in the 6q23 region, including polymorphisms in the TNFAIP3 gene, like that previously described for systemic lupus erythematosus.
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.
Resumo:
Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems
Resumo:
This paper introduces how artificial intelligence technologies can be integrated into a known computer aided control system design (CACSD) framework, Matlab/Simulink, using an object oriented approach. The aim is to build a framework to aid supervisory systems analysis, design and implementation. The idea is to take advantage of an existing CACSD framework, Matlab/Simulink, so that engineers can proceed: first to design a control system, and then to design a straightforward supervisory system of the control system in the same framework. Thus, expert systems and qualitative reasoning tools are incorporated into this popular CACSD framework to develop a computer aided supervisory system design (CASSD) framework. Object-variables an introduced into Matlab/Simulink for sharing information between tools
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
BACKGROUND: Supervised injection services (SISs) have been developed to promote safer drug injection practices, enhance health-related behaviors among people who inject drugs (PWID), and connect PWID with external health and social services. Nevertheless, SISs have also been accused of fostering drug use and drug trafficking. AIMS: To systematically collect and synthesize the currently available evidence regarding SIS-induced benefits and harm. METHODS: A systematic review was performed via the PubMed, Web of Science, and ScienceDirect databases using the keyword algorithm [("SUPERVISED" OR "SAFER") AND ("INJECTION" OR "INJECTING" OR "SHOOTING" OR "CONSUMPTION") AND ("FACILITY" OR "FACILITIES" OR "ROOM" OR "GALLERY" OR "CENTRE" OR "SITE")]. RESULTS: Seventy-five relevant articles were found. All studies converged to find that SISs were efficacious in attracting the most marginalized PWID, promoting safer injection conditions, enhancing access to primary health care, and reducing the overdose frequency. SISs were not found to increase drug injecting, drug trafficking or crime in the surrounding environments. SISs were found to be associated with reduced levels of public drug injections and dropped syringes. Of the articles, 85% originated from Vancouver or Sydney. CONCLUSION: SISs have largely fulfilled their initial objectives without enhancing drug use or drug trafficking. Almost all of the studies found in this review were performed in Canada or Australia, whereas the majority of SISs are located in Europe. The implementation of new SISs in places with high rates of injection drug use and associated harms appears to be supported by evidence.
Resumo:
To an odd irreducible 2-dimensional complex linear representation of the absolute Galois group of the field Q of rational numbers, a modular form of weight 1 is associated (modulo Artin's conjecture on the L-series of the representation in the icosahedral case). In addition, linear liftings of 2-dimensional projective Galois representations are related to solutions of certain Galois embedding problems. In this paper we present some recent results on the existence of liftings of projective representations and on the explicit resolution of embedding problems associated to orthogonal Galois representations, and explain how these results can be used to construct modular forms.
Resumo:
Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.
Resumo:
A semisupervised support vector machine is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictions.
Resumo:
Fluvial deposits are a challenge for modelling flow in sub-surface reservoirs. Connectivity and continuity of permeable bodies have a major impact on fluid flow in porous media. Contemporary object-based and multipoint statistics methods face a problem of robust representation of connected structures. An alternative approach to model petrophysical properties is based on machine learning algorithm ? Support Vector Regression (SVR). Semi-supervised SVR is able to establish spatial connectivity taking into account the prior knowledge on natural similarities. SVR as a learning algorithm is robust to noise and captures dependencies from all available data. Semi-supervised SVR applied to a synthetic fluvial reservoir demonstrated robust results, which are well matched to the flow performance
Resumo:
We present the study of discrete breather dynamics in curved polymerlike chains consisting of masses connected via nonlinear springs. The polymer chains are one dimensional but not rectilinear and their motion takes place on a plane. After constructing breathers following numerically accurate procedures, we launch them in the chains and investigate properties of their propagation dynamics. We find that breather motion is strongly affected by the presence of curved regions of polymers, while the breathers themselves show a very strong resilience and remarkable stability in the presence of geometrical changes. For chains with strong angular rigidity we find that breathers either pass through bent regions or get reflected while retaining their frequency. Their motion is practically lossless and seems to be determined through local energy conservation. For less rigid chains modeled via second neighbor interactions, we find similarly that chain geometry typically does not destroy the localized breather states but, contrary to the angularly rigid chains, it induces some small but constant energy loss. Furthermore, we find that a curved segment acts as an active gate reflecting or refracting the incident breather and transforming its velocity to a value that depends on the discrete breathers frequency. We analyze the physical reasoning behind these seemingly general breather properties.