970 resultados para superresolution near-field structure


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hexagonal array not only is a nature-preferred pattern but also is widely used in optoelectronical materials and devices. We report a simple method of hexagonal array illumination based on the Talbot effect that has a theoretical efficiency of 100%. An experimental efficiency of 90.6% with a binary phase (0, pi) hexagonal grating is given. This method should be highly interesting for applications of hexagonal array illumination in optical devices as well as in other hexagonal cells. (C) 2002 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been described that the near-field images of a high-density grating at the half self-imaging distance could be different for TE and TM polarization states. We propose that the phases of the diffraction orders play an important role in such polarization dependence. The view is verified through the coincidence of the numerical result of finite-difference time-domain method and the reconstructed results from the rigorous coupled-wave analysis. Field distributions of TE and TM polarizations are given numerically for a grating with period d = 2.3 lambda, which are verified through experiments with the scanning near-field optical microscopy technique. The concept of phase interpretation not only explains the polarization dependence at the half self-imaging distance of gratings with a physical view, but also, it could be widely used to describe the near-field diffraction of a variety of periodic diffractive optical elements whose feature size comparable to the wavelength. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent theoretical and experimental results suggested that the silver superlens could be constructed through controlling silver thin film thickness and preparation conditions, and applied in subdiffraction-limited optical imaging and optical lithography. In this work, we report another significant application of silver superlens-ultrahigh density optical data storage. With the silver superlens the subdiffraction-limited pit arrays on an optical disk are dynamically read out and the carrier-to-noise ratio can reach 25 dB for the thin film thickness of 46 nm. The readout laser power and readout velocity have little effect on the carrier-to-noise ratio. Additionally, in our experiment the silver thin film thickness needs to be controlled in the range from 20 to 80 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the finite-difference-time-domain method, the near-field optical distribution and properties of Sb thin film thermal lens are calculated and simulated. The results show as follows. Within the near-field distance to the output plane of thermal lens, the spot size is approximately 100 nm, and its intensity is greatly enhanced, which is higher than that of incident light. The spot shape gradually changes from ellipse to round at the distance of more than 12 nm to the output plane. The above-simulated results are further demonstrated by the static optical recording experiment. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the magnetic and magneto-optical properties of amorphous rare earth-transition metal (RE-TM) alloys as well as the magnetic coupling in the multi-layer thin films for high density optical data storage are presented. Using magnetic effect in scanning tunneling microscopy the clusters structure of amorphous RE-TM thin films has been observed and the perpendicular magnetic anisotropy in amorphous RE-TM thin films has been interpreted. Experimental results of quick phase transformation under short pulse laser irradiation of amorphous semiconductor and metallic alloy thin films for phase change optical recording are reported. A step-by-step phase transformation process through metastable states has been observed. The waveform of crystallization propagation in micro-size spot during laser recording in amorphous semiconductor thin films is characterized and quick recording and erasing mechanism for optical data storage with high performance are discussed. The nonlinear optical effects in amorphous alloy thin films have been studied. By photo-thermal effect or third order optical nonlinearity, the optical self-focusing is observed in amorphous mask thin films. The application of amorphous thin films with super-resolution near field structure for high-density optical data storage is performed. (c) 2007 Elsevier B.V. All rights reserved.