145 resultados para sulfone
Resumo:
Phenolphthalein poly(ether ether sulphone) (PES-C) was found to be miscible with uncured bisphenol-A-type epoxy resin, i.e. diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature within the whole composition range. Miscibility between PES-C and DGEBA is considered to be due mainly to the entropy contribution. However, dynamic mechanical analysis (d.m.a.) and scanning electron microscopy (SEM) studies revealed that PES-C exhibits different miscibility with four cured epoxy resins (ER). The overall compatibility and the resulting morphology of the cured blends are dependent on the choice of cure agent. For the blends cured with amines (4,4'-diaminodiphenylmethane (DDM) and 4,4'-diaminodiphenylsulphone (DDS)), no phase separation occurs as indicated by either d.m.a. or SEM. However, for the blends cured with anhydrides (maleic anhydride (MA) and phthalic anhydride (PA)), both d.m.a. and SEM clearly show evidence of phase separation. SEM study shows that the two phases interact well in the MA-cured blend while the interface between the phases in the PA-cured blend is poorly bonded. The differences in the overall compatibility and the resulting morphology between the amine-cured and anhydride-cured systems have been discussed from the points of view of both thermodynamics and kinetics.
Resumo:
Blends of poly(hydroxyether of phenolphthalein) (PHP) with poly(ether sulphone) (PES) were prepared by casting from a common solvent; they were found to be miscible and show a single, composition-dependent glass transition temperature. All the PHP/PES blends exhibited lower critical solution temperature behaviour, i.e. phase separation occurred at elevated temperatures. A F.T.-i.r. study revealed that a hydrogen-bonding interaction occurs between these polymers but it is weaker than in pure PHP. The observed miscibility is hence proposed to be the result of specific interactions between the polymers.
Resumo:
Blends of poly(ether sulphone) (PES) with a poly(ether imide) (PEI) in various proportions were prepared by the coprecipitation method. Mechanical properties and morphology of the blends were studied using tensile tests and scanning electron microscopy (SEM). The tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for ultimate strength. These results suggest that the PEI/PES blends are mechanically compatible. SEM study revealed that the blends are not homogeneous and the polymers are immiscible on the segmental level. However, the dispersions of the blends are rather fine. The interfaces between the two phases are excellently bonded; PEI and PES appear to interact well.
Resumo:
Blends of poly(N-vinyl-2-pyrrolidone) (PVP) with poly(ether sulphone) and two phenolphthalein-based polymers, viz. phenolphthalein poly(ether ether sulphone) and phenolphthalein poly(ether ether ketone) were prepared by casting from a common solvent and studied by differential scanning calorimetry. It was found that all the PVP blends are miscible and show a single, composition-dependent glass transition temperature (T(g)). The T(g)-composition dependence has been analysed by the use of the Gordon-Taylor equation. The values of the k parameter in the Gordon-Taylor equation obtained are all not high for the three pairs, in accordance with the fact that there is no strongly specific interaction between PVP and any of the other polymers.
Resumo:
The effect of tacticity on the conformational properties of poly(olefin sulfone)s was studied. Tactic polymers, prepared from racemic thiirane monomers using chiral inititators were compared with atactic polymers prepared by free radical co-polymerisation of the 1-olefin with sulfur dioxide. Analysis of the XRD patterns showed that the tactic polymers formed more ordered structures in the bulk with longer layer spacings, consistent with a model in which their side chains meet at the tips in contrast with the atactic polymers whose side chains interdigitate. 13C MAS nmr experiments suggest that as tacticity increases so too does the proportion of C-S bonds in the gauche conformation, however the proportion of S-C bonds in the trans conformation falls, in contrast to a reported molecular mechanics study. Finally, DSC measurements on the polymers with longer side chains showed the presence of two endotherms on heating, illustrating definite liquid crystalline behaviour.
Resumo:
A new tri-functional ligand (Bu2NCOCH2SO2CH2CONBu2)-Bu-i-Bu-i (L) was prepared and characterized. The coordination chemistry of this ligand with uranyl nitrate was studied with IR, (HNMR)-H-1, ES-MS, TG and elemental analysis methods. The structure of the compound [UO2(NO3)(2)L] was determined by single crystal X-ray diffraction techniques. In the structure the uranium(VI) ion is surrounded by eight oxygen atoms in a hexagonal bi-pyramidal geometry. Four oxygen atoms from two nitrate groups and two oxygen atoms from the ligand form a planar hexagon. The ligand acts as a bidentate chelate and bonds through both the carbamoyl groups to the uranyl nitrate. An ES-MS spectrum shows that the complex retains the bonding in solution. The compound displayed vibronically coupled fluorescence emission.
Resumo:
An analytical method for the determination of aldicarb, and its two major metabolites, aldicarb sulfoxide and aldicarb sulfone in fruits and vegetables is described. Briefly the method consisted of the use of a methanolic extraction, liquid-liquid extraction followed by solid-phase extraction clean-up. Afterwards, the final extract is analyzed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS). The specific fragment ion corresponding to [M-74](+) and the protonated molecular [M+K](+) ion were used for the unequivocal determination of aldicarb and its two major metabolites. The analytical performance of the proposed method and the results achieved were compared with those obtained using the common analytical method involving LC with post-column fluorescence detection (FL). The limits of detection varied between 0.2 and 1.3 ng but under LC-FL were slightly lower than when using LC-APCI-MS. However both methods permitted one to achieve the desired sensitivity for analyzing aldicarb and its metabolites in vegetables. The method developed in this work was applied to the trace determination of aldicarb and its metabolites in crop and orange extracts. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fipronil is an insecticide extensively used to control pests in crops and animals. There are relates of poisoning due to exposure of fipronil in mammals and the liver has been suggested as potential target. In this study, we evaluated the effects of fipronil and its metabolites sulfone and desulfinyl on the bioenergetics, reactive oxygen species (ROS) production and calcium efflux from mitochondria isolated from rat liver. Fipronil (5-25 μM) inhibited state-3 respiration in mitochondria energized with glutamate plus malate, substrates of complex I of the respiratory chain and decreased the mitochondrial membrane potential resulting in inhibition of ATP synthesis. Fipronil also caused uncoupling in succinate-energized mitochondria and calcium efflux. The metabolites sulfone and desulfinyl also acted as mitochondrial inhibitors and uncouplers and caused calcium efflux, but with different potencies, being the sulfone the more potent one. These effects of fipronil and its metabolites on mitochondrial bioenergetics and calcium homeostasis may be related to toxic effects of the insecticide in the liver.