929 resultados para subspace mapping
Resumo:
This paper describes a biologically inspired approach to vision-only simultaneous localization and mapping (SLAM) on ground-based platforms. The core SLAM system, dubbed RatSLAM, is based on computational models of the rodent hippocampus, and is coupled with a lightweight vision system that provides odometry and appearance information. RatSLAM builds a map in an online manner, driving loop closure and relocalization through sequences of familiar visual scenes. Visual ambiguity is managed by maintaining multiple competing vehicle pose estimates, while cumulative errors in odometry are corrected after loop closure by a map correction algorithm. We demonstrate the mapping performance of the system on a 66 km car journey through a complex suburban road network. Using only a web camera operating at 10 Hz, RatSLAM generates a coherent map of the entire environment at real-time speed, correctly closing more than 51 loops of up to 5 km in length.
Resumo:
The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be static. In contrast, solutions for persistent navigation and mapping must produce reliable goal-directed navigation outcomes in an environment that is assumed to be in constant flux. We investigate the persistent navigation and mapping problem in the context of an autonomous robot that performs mock deliveries in a working office environment over a two-week period. The solution was based on the biologically inspired visual SLAM system, RatSLAM. RatSLAM performed SLAM continuously while interacting with global and local navigation systems, and a task selection module that selected between exploration, delivery, and recharging modes. The robot performed 1,143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), traveled a total distance of more than 40 km over 37 hours of active operation, and recharged autonomously a total of 23 times.
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in one dimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.
Resumo:
This paper describes the current state of RatSLAM, a Simultaneous Localisation and Mapping (SLAM) system based on models of the rodent hippocampus. RatSLAM uses a competitive attractor network to fuse visual and odometry information. Energy packets in the network represent pose hypotheses, which are updated by odometry and can be enhanced or inhibited by visual input. This paper shows the effectiveness of the system in real robot tests in unmodified indoor environments using a learning vision system. Results are shown for two test environments; a large corridor loop and the complete floor of an office building.
Resumo:
RatSLAM is a system for vision-based Simultaneous Localisation and Mapping (SLAM) inspired by models of the rodent hippocampus. The system can produce stable representations of large complex environments during robot experiments in both indoor and outdoor environments. These representations are both topological and metric in nature, and can involve multiple representations of the same place as well as discontinuities. In this paper we describe a new technique known as experience mapping that can be used online with the RatSLAM system to produce world representations known as experience maps. These maps group together multiple place representations and are spatially continuous. A number of experiments have been conducted in simulation and a real world office environment. These experiments demonstrate the high degree to which experience maps are representative of the spatial arrangement of the environment.
Resumo:
This paper illustrates a method for finding useful visual landmarks for performing simultaneous localization and mapping (SLAM). The method is based loosely on biological principles, using layers of filtering and pooling to create learned templates that correspond to different views of the environment. Rather than using a set of landmarks and reporting range and bearing to the landmark, this system maps views to poses. The challenge is to produce a system that produces the same view for small changes in robot pose, but provides different views for larger changes in pose. The method has been developed to interface with the RatSLAM system, a biologically inspired method of SLAM. The paper describes the method of learning and recalling visual landmarks in detail, and shows the performance of the visual system in real robot tests.
Resumo:
In this paper, we present recent results with using range from radio for mobile robot localization. In previous work we have shown how range readings from radio tags placed in the environment can be used to localize a robot. We have extended previous work to consider robustness. Specifically, we are interested in the case where range readings are very noisy and available intermittently. Also, we consider the case where the location of the radio tags is not known at all ahead of time and must be solved for simultaneously along with the position of the moving robot. We present results from a mobile robot that is equipped with GPS for ground truth, operating over several km.
Resumo:
In this thesis, the relationship between air pollution and human health has been investigated utilising Geographic Information System (GIS) as an analysis tool. The research focused on how vehicular air pollution affects human health. The main objective of this study was to analyse the spatial variability of pollutants, taking Brisbane City in Australia as a case study, by the identification of the areas of high concentration of air pollutants and their relationship with the numbers of death caused by air pollutants. A correlation test was performed to establish the relationship between air pollution, number of deaths from respiratory disease, and total distance travelled by road vehicles in Brisbane. GIS was utilized to investigate the spatial distribution of the air pollutants. The main finding of this research is the comparison between spatial and non-spatial analysis approaches, which indicated that correlation analysis and simple buffer analysis of GIS using the average levels of air pollutants from a single monitoring station or by group of few monitoring stations is a relatively simple method for assessing the health effects of air pollution. There was a significant positive correlation between variable under consideration, and the research shows a decreasing trend of concentration of nitrogen dioxide at the Eagle Farm and Springwood sites and an increasing trend at CBD site. Statistical analysis shows that there exists a positive relationship between the level of emission and number of deaths, though the impact is not uniform as certain sections of the population are more vulnerable to exposure. Further statistical tests found that the elderly people of over 75 years age and children between 0-15 years of age are the more vulnerable people exposed to air pollution. A non-spatial approach alone may be insufficient for an appropriate evaluation of the impact of air pollutant variables and their inter-relationships. It is important to evaluate the spatial features of air pollutants before modeling the air pollution-health relationships.
Resumo:
Presentation describling a project in data intensive research in the humanities. Measuring activity of publically available data in social networks such as Blogosphere, Twitter, Flickr, YouTube
Resumo:
Probabilistic robot mapping techniques can produce high resolution, accurate maps of large indoor and outdoor environments. However, much less progress has been made towards robots using these maps to perform useful functions such as efficient navigation. This paper describes a pragmatic approach to mapping system development that considers not only the map but also the navigation functionality that the map must provide. We pursue this approach within a bio-inspired mapping context, and use esults from robot experiments in indoor and outdoor environments to demonstrate its validity. The research attempts to stimulate new research directions in the field of robot mapping with a proposal for a new approach that has the potential to lead to more complete mapping and navigation systems.