989 resultados para sublethal effects
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Studies of sub-lethal effects of pesticide residues on stingless bees are scarce and morphological analysis of organs would add information to toxicological analysis in order to clarify the continuous exposure of Scaptotrigona postica to insecticides. The aim of this study was to evaluate the morphology and histochemistry of the Malpighian tubules (excretory organ) of S. postica exposed to fipronil or boric acid to detect cellular responses that indicate toxicity or adaptative mechanisms to stress induced by exposure of worker bees to low doses of these chemical compounds. Newly emerged bees were submitted to toxicological bioassays and morphological analyses by optical microscopy and Transmission Electron Microscopy, as well as histochemical methods, were performed to detect proteins and glycoconjugates. Additionally, immunohistochemical detection of DNA fragmentation and HSP70 (70-kDa Heat shock protein) were performed to detect cell death and stress response, respectively. Statistical analysis, for the bioassays conducted with ingestion of contaminated diet with boric acid at 0.75% (w/w) or with fipronil at 0.1μg/kg of food, showed that the survival of bees that ingested the contaminated diets were significantly different to the survival rate presented by the control group (P<0.0001). Although some characteristics indicative of initiation of cell death were observed, the cells remained metabolically active in the processes of excretion and inactivation of chemical compounds. The data from this study reinforce the importance of research on sublethal effects of low doses of pesticides on bees in an attempt to assess a possible realistic dose and evaluate the risk assessment of stingless bee S. postica foraging in the vicinity of cultivated fields and/or in green urban areas. © 2013 Elsevier Ltd.
Resumo:
Contaminant driven genetic erosion reported through the inspection of selectable traits can be underestimated using neutral markers. This divergence was previously reported in the aquatic system of an abandoned pyrite mine. The most sensitive genotypes of the microcrustacean cladoceran Daphnia longispina were found to be lacking in the impacted reservoir near the entrance of the metal rich acid mine drainage (AMD). Since that divergence could be, at least partially, accounted for by mutagenicity and genotoxicity of the AMD, the present study aimed at providing such a characterization. The Allium cepa chromosomal aberration assay, using root meristematic cells, was carried out, by exposing seeds to 100, 10, 1, and 0.1 % of the local AMD. Chromosomal aberrations, cell division phases and cell death were quantified after the AMD exposure and after 24 and 48 h recovery periods. The AMD revealed to be mutagenic and genotoxic, even after diluting it to 1 and 0.1 %. Dilutions within this range were previously found to be below the lethality threshold and to elicit sublethal effects on reproduction of locally collected D. longispina clonal lineages Significant mutagenic effects (micronuclei and chromosomal breaks) were also found at 0.1 % AMD, supporting that exposure may induce permanent genetic alterations. Recovery tests showed that AMD genotoxic effects persisted after the exposure. © 2013 Springer Science+Business Media New York.
Resumo:
The ecotoxicology of nano-TiO2 has been extensively studied in recent years; however, few toxicological investigations have considered the photocatalytic properties of the substance, which can increase its toxicity to aquatic biota. The aim of this work was to evaluate the effects on fish exposed to different nano-TiO2 concentrations and illumination conditions. The interaction of these variables was investigated by observing the survival of the organisms, together with biomarkers of biochemical and genetic alterations. Fish (Piaractus mesopotamicus) were exposed for 96h to 0, 1, 10, and 100mg/L of nano-TiO2, under visible light, and visible light with ultraviolet (UV) light (22.47J/cm2/h). The following biomarkers of oxidative stress were monitored in the liver: concentrations of lipid hydroperoxide and carbonylated protein, and specific activities of superoxide dismutase, catalase, and glutathione S-transferase. Other biomarkers of physiological function were also studied: the specific activities of acid phosphatase and Na,K-ATPase were analyzed in the liver and brain, respectively, and the concentration of metallothionein was measured in the gills. In addition, micronucleus and comet assays were performed with blood as genotoxic biomarkers. Nano-TiO2 caused no mortality under any of the conditions tested, but induced sublethal effects that were influenced by illumination condition. Under both illumination conditions tested, exposure to 100mg/L showed an inhibition of acid phosphatase activity. Under visible light, there was an increase in metallothionein level in fish exposed to 1mg/L of nano-TiO2. Under UV light, protein carbonylation was reduced in groups exposed to 1 and 10mg/L, while nucleus alterations in erythrocytes were higher in fish exposed to 10mg/L. As well as improving the understanding of nano-TiO2 toxicity, the findings demonstrated the importance of considering the experimental conditions in nanoecotoxicological tests. This work provides information for the development of protocols to study substances whose toxicity is affected by illumination conditions. © 2013 Elsevier B.V..
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Bees have a crucial role in pollination; therefore, it is important to determine the causes of their recent decline. Fipronil and imidacloprid are insecticides used worldwide to eliminate or control insect pests. Because they are broad-spectrum insecticides, they can also affect honeybees. Many researchers have studied the lethal and sublethal effects of these and other insecticides on honeybees, and some of these studies have demonstrated a correlation between the insecticides and colony collapse disorder in bees. The authors investigated the effects of fipronil and imidacloprid on the bioenergetic functioning of mitochondria isolated from the heads and thoraces of Africanized honeybees. Fipronil caused dose-dependent inhibition of adenosine 5'-diphosphate-stimulated (state 3) respiration in mitochondria energized by either pyruvate or succinate, albeit with different potentials, in thoracic mitochondria; inhibition was strongest when respiring with complex I substrate. Fipronil affected adenosine 5'-triphosphate (ATP) production in a dose-dependent manner in both tissues and substrates, though with different sensitivities. Imidacloprid also affected state-3 respiration in both the thorax and head, being more potent in head pyruvate-energized mitochondria; it also inhibited ATP production. Fipronil and imidacloprid had no effect on mitochondrial state-4 respiration. The authors concluded that fipronil and imidacloprid are inhibitors of mitochondrial bioenergetics, resulting in depleted ATP. This action can explain the toxicity of these compounds to honeybees. (c) 2014 SETAC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)