962 resultados para stratification merit
Resumo:
Turbulence was generated by an oscillating grid above a bed of sediment of spherical glass beads. As expected, part of the sediment was lifted up by the grid action and a suspension layer of depth D formed above the grid. This depth was found remaining independent of grid action but varying with the sediment layer depth when the grid action was kept constant. Volume concentration measurements show the existence of only weak concentration gradients over the layer depth with a rapid fall off in concentration at the outer edge. The theoretical analysis based on a concentration flux model is in good qualitative agreement with observations.
Resumo:
This paper presents new evidence on the role of segregation into firms, occupations within a firm and stratification into professional categories within firm-occupations in explaining the gender wage gap. I use a generalized earnings model that allows observed and unobserved group characteristics to have different impact on wages of men and women within the same group. The database is a large sample of individual wage data from the 1995 Spanish Wage Structure Survey. Results indicate that firm segregation in our sample accounts for around one-fifth of the raw gender wage gap. Occupational segregation within firms accounts for about one-third of the raw wage gap, and stratification into different professional categories within firms and occupations explains another one-third of it. The remaining one-fifth of the overall gap arises from better outcomes of men relative to women within professional categories. It is also found that rewards to both observable and unobservable skills, particularly those related to education, are higher for males than for females within the same group. Finally, mean wages in occupations or job categories with a higher fraction of female co-workers are lower, but the negative impact of femaleness in higher for women.
Resumo:
Sedimentary rocks on Mars provide insight into past aqueous and atmospheric processes, climate regimes, and potential habitability. The stratigraphic architecture of sedimentary rocks on Mars is similar to that of Earth, indicating that the processes that govern deposition and erosion on Mars can be reasonably inferred through reference to analogous terrestrial systems. This dissertation aims to understand Martian surface processes through the use of (1) ground-based observations from the Mars Exploration Rovers, (2) orbital data from the High Resolution Imaging Science Experiment onboard the Mars Reconnaissance Orbiter, and (3) the use of terrestrial field analogs to understand bedforms and sediment transport on Mars. Chapters 1 and 2 trace the history of aqueous activity at Meridiani Planum, through the reconstruction of eolian bedforms at Victoria crater, and the identification of a potential mudstone facies at Santa Maria crater. Chapter 3 uses Terrestrial Laser Scanning to study cross-bedding in pyroclastic surge deposits on Earth in order to understand sediment transport in these events and to establish criteria for their identification on Mars. The final chapter analyzes stratal geometries in the Martian North Polar Layered Deposits using tools for sequence stratigraphic analysis, to better constrain past surface processes and past climate conditions on Mars.
Resumo:
The Inter-American Tropical Tuna Commission (IATTC) staff has been sampling the size distributions of tunas in the eastern Pacific Ocean (EPO) since 1954, and the species composition of the catches since 2000. The IATTC staff use the data from the species composition samples, in conjunction with observer and/or logbook data, and unloading data from the canneries to estimate the total annual catches of yellowfin (Thunnus albacares), skipjack (Katsuwonus pelamis), and bigeye (Thunnus obesus) tunas. These sample data are collected based on a stratified sampling design. I propose an update of the stratification of the EPO into more homogenous areas in order to reduce the variance in the estimates of the total annual catches and incorporate the geographical shifts resulting from the expansion of the floating-object fishery during the 1990s. The sampling model used by the IATTC is a stratified two-stage (cluster) random sampling design with first stage units varying (unequal) in size. The strata are month, area, and set type. Wells, the first cluster stage, are selected to be sampled only if all of the fish were caught in the same month, same area, and same set type. Fish, the second cluster stage, are sampled for lengths, and independently, for species composition of the catch. The EPO is divided into 13 sampling areas, which were defined in 1968, based on the catch distributions of yellowfin and skipjack tunas. This area stratification does not reflect the multi-species, multi-set-type fishery of today. In order to define more homogenous areas, I used agglomerative cluster analysis to look for groupings of the size data and the catch and effort data for 2000–2006. I plotted the results from both datasets against the IATTC Sampling Areas, and then created new areas. I also used the results of the cluster analysis to update the substitution scheme for strata with catch, but no sample. I then calculated the total annual catch (and variance) by species by stratifying the data into new Proposed Sampling Areas and compared the results to those reported by the IATTC. Results showed that re-stratifying the areas produced smaller variances of the catch estimates for some species in some years, but the results were not significant.
Resumo:
Sampling is a key element in the assessment of any fish stock. It is often one of the most expensive activities of the management process; thus, improved efficiency can result in significant cost savings. In most cases a two-phase sampling strategy is employed. Two commonly used versions of such stratified random schemes were simulated using a test population based on Atlantic cod, Gadus morhua. A 1 otolith per 1 cm length frequency currently used for many flatfish and some smaller gadoids and a 3 otolith per 3 cm length frequency currently used for many of the larger gadoids. No difference was detected in the age composition or mean length at age for either scheme; however, 10 percent fewer otoliths were collected in 1 for 1 sampling than 3 for 3. There was an improvement of between 30 and 60 percent in the coefficient of variation of the estimated catch numbers at age using the 1 for 1 compared with the 3 for 3 stratified sampling. For these reasons and other operational considerations, the 1 for 1 stratified random design of sampling appears to be superior.