985 resultados para stochastic stability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to simulate stiff biochemical reaction systems, an explicit exponential Euler scheme is derived for multidimensional, non-commutative stochastic differential equations with a semilinear drift term. The scheme is of strong order one half and A-stable in mean square. The combination with this and the projection method shows good performance in numerical experiments dealing with an alternative formulation of the chemical Langevin equation for a human ether a-go-go related gene ion channel mode

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses an output feedback control problem for a class of networked control systems (NCSs) with a stochastic communication protocol. Under the scenario that only one sensor is allowed to obtain the communication access at each transmission instant, a stochastic communication protocol is first defined, where the communication access is modelled by a discrete-time Markov chain with partly unknown transition probabilities. Secondly, by use of a network-based output feedback control strategy and a time-delay division method, the closed-loop system is modeled as a stochastic system with multi time-varying delays, where the inherent characteristic of the network delay is well considered to improve the control performance. Then, based on the above constructed stochastic model, two sufficient conditions are derived for ensuring the mean-square stability and stabilization of the system under consideration. Finally, two examples are given to show the effectiveness of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fully implicit integration method for stochastic differential equations with significant multiplicative noise and stiffness in both the drift and diffusion coefficients has been constructed, analyzed and illustrated with numerical examples in this work. The method has strong order 1.0 consistency and has user-selectable parameters that allow the user to expand the stability region of the method to cover almost the entire drift-diffusion stability plane. The large stability region enables the method to take computationally efficient time steps. A system of chemical Langevin equations simulated with the method illustrates its computational efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of stochastic wind power has accentuated a challenge for power system stability assessment. Since the power system is a time-variant system under wind generation fluctuations, pure time-domain simulations are difficult to provide real-time stability assessment. As a result, the worst-case scenario is simulated to give a very conservative assessment of system transient stability. In this study, a probabilistic contingency analysis through a stability measure method is proposed to provide a less conservative contingency analysis which covers 5-min wind fluctuations and a successive fault. This probabilistic approach would estimate the transfer limit of a critical line for a given fault with stochastic wind generation and active control devices in a multi-machine system. This approach achieves a lower computation cost and improved accuracy using a new stability measure and polynomial interpolation, and is feasible for online contingency analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose several stochastic approximation implementations for related algorithms in flow-control of communication networks. First, a discrete-time implementation of Kelly's primal flow-control algorithm is proposed. Convergence with probability 1 is shown, even in the presence of communication delays and stochastic effects seen in link congestion indications. This ensues from an analysis of the flow-control algorithm using the asynchronous stochastic approximation (ASA) framework. Two relevant enhancements are then pursued: a) an implementation of the primal algorithm using second-order information, and b) an implementation where edge-routers rectify misbehaving flows. Next, discretetime implementations of Kelly's dual algorithm and primaldual algorithm are proposed. Simulation results a) verifying the proposed algorithms and, b) comparing the stability properties are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study stochastic games with countable state space, compact action spaces, and limiting average payoff. ForN-person games, the existence of an equilibrium in stationary strategies is established under a certain Liapunov stability condition. For two-person zero-sum games, the existence of a value and optimal strategies for both players are established under the same stability condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonconservatively loaded columns. which have stochastically distributed material property values and stochastic loadings in space are considered. Young's modulus and mass density are treated to constitute random fields. The support stiffness coefficient and tip follower load are considered to be random variables. The fluctuations of external and distributed loadings are considered to constitute a random field. The variational formulation is adopted to get the differential equation and boundary conditions. The non self-adjoint operators are used at the boundary of the regularity domain. The statistics of vibration frequencies and modes are obtained using the standard perturbation method, by treating the fluctuations to be stochastic perturbations. Linear dependence of vibration and stability parameters over property value fluctuations and loading fluctuations are assumed. Bounds for the statistics of vibration frequencies are obtained. The critical load is first evaluated for the averaged problem and the corresponding eigenvalue statistics are sought. Then, the frequency equation is employed to transform the eigenvalue statistics to critical load statistics. Specialization of the general procedure to Beck, Leipholz and Pfluger columns is carried out. For Pfluger column, nonlinear transformations are avoided by directly expressing the critical load statistics in terms of input variable statistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of uncertainty in composite material properties on the aeroelastic response, vibratory loads, and stability of a hingeless helicopter rotor is investigated. The uncertainty impact on rotating natural frequencies of the blade is studied with Monte Carlo simulations and first-order reliability methods. The stochastic aeroelastic analyses in hover and forward flight are carried out with Monte Carlo simulations. The flap, lag, and torsion responses show considerable scatter from their baseline values, and the uncertainty impact varies with the azimuth angle. Furthermore, the blade response shows finite probability of resonance-type conditions caused by modal frequencies approaching multiples of the rotor speed. The 4/rev vibratory forces show large deviations from their baseline values. The lag mode damping shows considerable scatter due to uncertain material properties with an almost 40% probability of instability in hover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we give a generalization of a result by Borkar and Meyn (2000) 1], on the stability and convergence of synchronous-update stochastic approximation algorithms, to the case of asynchronous stochastic approximations with delays. We then describe an interesting application of the result to asynchronous distributed temporal difference (TD) learning with function approximation and delays. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the problem of computing numerical solutions for stochastic differential equations (SDEs) of Ito form. A fully explicit method, the split-step forward Milstein (SSFM) method, is constructed for solving SDEs. It is proved that the SSFM method is convergent with strong order gamma = 1 in the mean-square sense. The analysis of stability shows that the mean-square stability properties of the method proposed in this paper are an improvement on the mean-square stability properties of the Milstein method and three stage Milstein methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE The ratio of the measured abundance of 13C18O bonding CO2 to its stochastic abundance, prescribed by the delta 13C and delta 18O values from a carbonate mineral, is sensitive to its growth temperature. Recently, clumped-isotope thermometry, which uses this ratio, has been adopted as a new tool to elucidate paleotemperatures quantitatively. METHODS Clumped isotopes in CO2 were measured with a small-sector isotope ratio mass spectrometer. CO2 samples digested from several kinds of calcium carbonates by phosphoric acid at 25 degrees C were purified using both cryogenic and gas-chromatographic separations, and their isotopic composition (delta 13C, delta 18O, Delta 47, Delta 48 and Delta 49 values) were then determined using a dual-inlet Delta XP mass spectrometer. RESULTS The internal precisions of the single gas Delta 47 measurements were 0.005 and 0.02 parts per thousand (1 SE) for the optimum and the routine analytical conditions, respectively, which are comparable with those obtained using a MAT 253 mass spectrometer. The long-term variations in the Delta 47 values for the in-house working standard and the heated CO2 gases since 2007 were close to the routine, single gas uncertainty while showing seasonal-like periodicities with a decreasing trend. Unlike the MAT 253, the Delta XP did not show any significant relationship between the Delta 47 and delta 47 values. CONCLUSIONS The Delta XP gave results that were approximately as precise as those of the MAT 253 for clumped-isotope analysis. The temporal stability of the Delta XP seemed to be lower, although an advantage of the Delta XP was that no dependency of delta 47 on Delta 47 was found. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.