984 resultados para stochastic simulation
Resumo:
Population viability analyses (PVA) are increasingly used in metapopulation conservation plans. Two major types of models are commonly used to assess vulnerability and to rank management options: population-based stochastic simulation models (PSM such as RAMAS or VORTEX) and stochastic patch occupancy models (SPOM). While the first set of models relies on explicit intrapatch dynamics and interpatch dispersal to predict population levels in space and time, the latter is based on spatially explicit metapopulation theory where the probability of patch occupation is predicted given the patch area and isolation (patch topology). We applied both approaches to a European tree frog (Hyla arborea) metapopulation in western Switzerland in order to evaluate the concordances of both models and their applications to conservation. Although some quantitative discrepancies appeared in terms of network occupancy and equilibrium population size, the two approaches were largely concordant regarding the ranking of patch values and sensitivities to parameters, which is encouraging given the differences in the underlying paradigms and input data.
Resumo:
The consequences of variable rates of clonal reproduction on the population genetics of neutral markers are explored in diploid organisms within a subdivided population (island model). We use both analytical and stochastic simulation approaches. High rates of clonal reproduction will positively affect heterozygosity. As a consequence, nearly twice as many alleles per locus can be maintained and population differentiation estimated as F(ST) value is strongly decreased in purely clonal populations as compared to purely sexual ones. With increasing clonal reproduction, effective population size first slowly increases and then points toward extreme values when the reproductive system tends toward strict clonality. This reflects the fact that polymorphism is protected within individuals due to fixed heterozygosity. Contrarily, genotypic diversity smoothly decreases with increasing rates of clonal reproduction. Asexual populations thus maintain higher genetic diversity at each single locus but a lower number of different genotypes. Mixed clonal/sexual reproduction is nearly indistinguishable from strict sexual reproduction as long as the proportion of clonal reproduction is not strongly predominant for all quantities investigated, except for genotypic diversities (both at individual loci and over multiple loci).
Resumo:
Recent experiments showed that the linear double-stranded DNA in bacteriophage capsids is both highly knotted and neatly structured. What is the physical basis of this organization? Here we show evidence from stochastic simulation techniques that suggests that a key element is the tendency of contacting DNA strands to order, as in cholesteric liquid crystals. This interaction favors their preferential juxtaposition at a small twist angle, thus promoting an approximately nematic (and apolar) local order. The ordering effect dramatically impacts the geometry and topology of DNA inside phages. Accounting for this local potential allows us to reproduce the main experimental data on DNA organization in phages, including the cryo-EM observations and detailed features of the spectrum of DNA knots formed inside viral capsids. The DNA knots we observe are strongly delocalized and, intriguingly, this is shown not to interfere with genome ejection out of the phage.
Resumo:
The present paper studies the probability of ruin of an insurer, if excess of loss reinsurance with reinstatements is applied. In the setting of the classical Cramer-Lundberg risk model, piecewise deterministic Markov processes are used to describe the free surplus process in this more general situation. It is shown that the finite-time ruin probability is both the solution of a partial integro-differential equation and the fixed point of a contractive integral operator. We exploit the latter representation to develop and implement a recursive algorithm for numerical approximation of the ruin probability that involves high-dimensional integration. Furthermore we study the behavior of the finite-time ruin probability under various levels of initial surplus and security loadings and compare the efficiency of the numerical algorithm with the computational alternative of stochastic simulation of the risk process. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Geophysical techniques can help to bridge the inherent gap with regard to spatial resolution and the range of coverage that plagues classical hydrological methods. This has lead to the emergence of the new and rapidly growing field of hydrogeophysics. Given the differing sensitivities of various geophysical techniques to hydrologically relevant parameters and their inherent trade-off between resolution and range the fundamental usefulness of multi-method hydrogeophysical surveys for reducing uncertainties in data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is the quantitative integration of the resulting vast and diverse database in order to obtain a unified model of the probed subsurface region that is internally consistent with all available data. To address this problem, we have developed a strategy towards hydrogeophysical data integration based on Monte-Carlo-type conditional stochastic simulation that we consider to be particularly suitable for local-scale studies characterized by high-resolution and high-quality datasets. Monte-Carlo-based optimization techniques are flexible and versatile, allow for accounting for a wide variety of data and constraints of differing resolution and hardness and thus have the potential of providing, in a geostatistical sense, highly detailed and realistic models of the pertinent target parameter distributions. Compared to more conventional approaches of this kind, our approach provides significant advancements in the way that the larger-scale deterministic information resolved by the hydrogeophysical data can be accounted for, which represents an inherently problematic, and as of yet unresolved, aspect of Monte-Carlo-type conditional simulation techniques. We present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on pertinent synthetic data and then applied to corresponding field data collected at the Boise Hydrogeophysical Research Site near Boise, Idaho, USA.
Resumo:
The objective of this work was to compare the relative efficiency of initial selection and genetic parameter estimation, using augmented blocks design (ABD), augmented blocks twice replicated design (DABD) and group of randomised block design experiments with common treatments (ERBCT), by simulations, considering fixed effect model and mixed model with regular treatment effects as random. For the simulations, eight different conditions (scenarios) were considered. From the 600 simulations in each scenario, the mean percentage selection coincidence, the Pearsons´s correlation estimates between adjusted means for the fixed effects model, and the heritability estimates for the mixed model were evaluated. DABD and ERBCT were very similar in their comparisons and slightly superior to ABD. Considering the initial stages of selection in a plant breeding program, ABD is a good alternative for selecting superior genotypes, although none of the designs had been effective to estimate heritability in all the different scenarios evaluated.
Resumo:
quantiNemo is an individual-based, genetically explicit stochastic simulation program. It was developed to investigate the effects of selection, mutation, recombination and drift on quantitative traits with varying architectures in structured populations connected by migration and located in a heterogeneous habitat. quantiNemo is highly flexible at various levels: population, selection, trait(s) architecture, genetic map for QTL and/or markers, environment, demography, mating system, etc. quantiNemo is coded in C++ using an object-oriented approach and runs on any computer platform. Availability: Executables for several platforms, user's manual, and source code are freely available under the GNU General Public License at http://www2.unil.ch/popgen/softwares/quantinemo.
Resumo:
The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
To optimally manage a metapopulation, managers and conservation biologists can favor a type of habitat spatial distribution (e.g. aggregated or random). However, the spatial distribution that provides the highest habitat occupancy remains ambiguous and numerous contradictory results exist. Habitat occupancy depends on the balance between local extinction and colonization. Thus, the issue becomes even more puzzling when various forms of relationships - positive or negative co-variation - between local extinction and colonization rate within habitat types exist. Using an analytical model we demonstrate first that the habitat occupancy of a metapopulation is significantly affected by the presence of habitat types that display different extinction-colonization dynamics, considering: (i) variation in extinction or colonization rate and (ii) positive and negative co-variation between the two processes within habitat types. We consequently examine, with a spatially explicit stochastic simulation model, how different degrees of habitat aggregation affect occupancy predictions under similar scenarios. An aggregated distribution of habitat types provides the highest habitat occupancy when local extinction risk is spatially heterogeneous and high in some places, while a random distribution of habitat provides the highest habitat occupancy when colonization rates are high. Because spatial variability in local extinction rates always favors aggregation of habitats, we only need to know about spatial variability in colonization rates to determine whether aggregating habitat types increases, or not, metapopulation occupancy. From a comparison of the results obtained with the analytical and with the spatial-explicit stochastic simulation model we determine the conditions under which a simple metapopulation model closely matches the results of a more complex spatial simulation model with explicit heterogeneity.
Resumo:
ABSTRACT The citriculture consists in several environmental risks, as weather changes and pests, and also consists in considerable financial risk, mainly due to the period ofreturn on the initial investment. This study was motivated by the need to assess the risks of a business activity such as citriculture. Our objective was to build a stochastic simulation model to achieve the economic and financial analysis of an orange producer in the Midwest region of the state of Sao Paulo, under conditions of uncertainty. The parameters used were the Net Present Value (NPV), the Modified Internal Rate of Return(MIRR), and the Discounted Payback. To evaluate the risk conditions we built a probabilistic model of pseudorandom numbers generated with Monte Carlo method. The results showed that the activity analyzed provides a risk of 42.8% to reach a NPV negative; however, the yield assessed by MIRR was 7.7%, higher than the yield from the reapplication of the positive cash flows. The financial investment pays itself after the fourteenth year of activity.
Resumo:
Low concentrations of elements in geochemical analyses have the peculiarity of being compositional data and, for a given level of significance, are likely to be beyond the capabilities of laboratories to distinguish between minute concentrations and complete absence, thus preventing laboratories from reporting extremely low concentrations of the analyte. Instead, what is reported is the detection limit, which is the minimum concentration that conclusively differentiates between presence and absence of the element. A spatially distributed exhaustive sample is employed in this study to generate unbiased sub-samples, which are further censored to observe the effect that different detection limits and sample sizes have on the inference of population distributions starting from geochemical analyses having specimens below detection limit (nondetects). The isometric logratio transformation is used to convert the compositional data in the simplex to samples in real space, thus allowing the practitioner to properly borrow from the large source of statistical techniques valid only in real space. The bootstrap method is used to numerically investigate the reliability of inferring several distributional parameters employing different forms of imputation for the censored data. The case study illustrates that, in general, best results are obtained when imputations are made using the distribution best fitting the readings above detection limit and exposes the problems of other more widely used practices. When the sample is spatially correlated, it is necessary to combine the bootstrap with stochastic simulation
Resumo:
El proyecto de investigación parte de la dinámica del modelo de distribución tercerizada para una compañía de consumo masivo en Colombia, especializada en lácteos, que para este estudio se ha denominado “Lactosa”. Mediante datos de panel con estudio de caso, se construyen dos modelos de demanda por categoría de producto y distribuidor y mediante simulación estocástica, se identifican las variables relevantes que inciden sus estructuras de costos. El problema se modela a partir del estado de resultados por cada uno de los cuatro distribuidores analizados en la región central del país. Se analiza la estructura de costos y el comportamiento de ventas dado un margen (%) de distribución logístico, en función de las variables independientes relevantes, y referidas al negocio, al mercado y al entorno macroeconómico, descritas en el objeto de estudio. Entre otros hallazgos, se destacan brechas notorias en los costos de distribución y costos en la fuerza de ventas, pese a la homogeneidad de segmentos. Identifica generadores de valor y costos de mayor dispersión individual y sugiere uniones estratégicas de algunos grupos de distribuidores. La modelación con datos de panel, identifica las variables relevantes de gestión que inciden sobre el volumen de ventas por categoría y distribuidor, que focaliza los esfuerzos de la dirección. Se recomienda disminuir brechas y promover desde el productor estrategias focalizadas a la estandarización de procesos internos de los distribuidores; promover y replicar los modelos de análisis, sin pretender remplazar conocimiento de expertos. La construcción de escenarios fortalece de manera conjunta y segura la posición competitiva de la compañía y sus distribuidores.
Resumo:
We developed a stochastic simulation model incorporating most processes likely to be important in the spread of Phytophthora ramorum and similar diseases across the British landscape (covering Rhododendron ponticum in woodland and nurseries, and Vaccinium myrtillus in heathland). The simulation allows for movements of diseased plants within a realistically modelled trade network and long-distance natural dispersal. A series of simulation experiments were run with the model, representing an experiment varying the epidemic pressure and linkage between natural vegetation and horticultural trade, with or without disease spread in commercial trade, and with or without inspections-with-eradication, to give a 2 x 2 x 2 x 2 factorial started at 10 arbitrary locations spread across England. Fifty replicate simulations were made at each set of parameter values. Individual epidemics varied dramatically in size due to stochastic effects throughout the model. Across a range of epidemic pressures, the size of the epidemic was 5-13 times larger when commercial movement of plants was included. A key unknown factor in the system is the area of susceptible habitat outside the nursery system. Inspections, with a probability of detection and efficiency of infected-plant removal of 80% and made at 90-day intervals, reduced the size of epidemics by about 60% across the three sectors with a density of 1% susceptible plants in broadleaf woodland and heathland. Reducing this density to 0.1% largely isolated the trade network, so that inspections reduced the final epidemic size by over 90%, and most epidemics ended without escape into nature. Even in this case, however, major wild epidemics developed in a few percent of cases. Provided the number of new introductions remains low, the current inspection policy will control most epidemics. However, as the rate of introduction increases, it can overwhelm any reasonable inspection regime, largely due to spread prior to detection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work was to evaluate the effect of the variables number of recipients, synchronization protocol, reproductive efficiency indicators and pregnancy cost, in the economic effectiveness of in vivo and in vitro bovine embryo production. A simulation application was elaborated to allow the user to insert the input variable parameters. A basic scenario, from the efficiency traditional rates of in vivo (ET) and in vitro production (IVP) techniques of bovine embryos, was introduced in the software as a criterion to compare the results. This software was able to reproduce both ET and IVP scenarios. The embryo production was simulated through stochastic simulation. The optimal number of recipients using sensitivity analysis was determined. The net present value and cost per pregnancy were used as a decision parameter. The synchronization for fixed-time embryo transfer decreased the recipient idleness and, consequently, the final cost of pregnancy, in comparison to the traditional methodology. Foetal sexing must be associated to IVP of bovine embryos. In addition, the optimal recipient number per donor is variable and depends on data inserted in the system.
Resumo:
Desenvolveu-se um estudo de simulação estocástica com o objetivo de verificar as consequências do uso combinado de acasalamento dirigido e sêmen sexado em uma população de bovinos de corte sob seleção. Simularam-se seis gerações de seleção para três cenários de acasalamento e uso de sêmen sexado. O primeiro cenário foi caracterizado por acasalamento aleatório e uso exclusivo de sêmen convencional. O segundo cenário caracterizou-se pelo uso de acasalamento associativo positivo nas 40% melhores vacas e acasalamento associativo negativo nas demais, sem uso de sêmen sexado. O terceiro cenário seguiu o mesmo procedimento de acasalamento do segundo, combinando-o com uso de sêmen sexado nas vacas submetidas a acasalamento associativo positivo. O acasalamento associativo positivo teve maior impacto no progresso genético que o uso de sêmen sexado, apesar de ter aumentado a incidência de endogamia na população. O uso de acasalamento associativo negativo foi ineficiente em reduzir a variabilidade dos animais destinados ao abate. O uso combinado de acasalmento associativo positivo e sêmen sexado aumentou a produção de animais geneticamente superiores.